Почему при действии силы трения закон. Закон сохранения энергии. Превращение энергии при действии силы тяжести; силы упругости; силы трения. Работа силы трения и механическая энергия


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Присматриваясь к движению шарика, подпрыгивающего на плите (§ 102), можно обнаружить, что после каждого удара шарик поднимается на несколько меньшую высоту, чем раньше (рис. 169), т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближенно. Причина заключается в том, что в этом опыте возникают силы трения: сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и полная энергия тел уменьшается. За счет этой убыли энергии и совершается работа против сил трения.

Рис. 169. Уменьшение высоты отскока шарика после многих ударов о плиту

Например, при падении тела с большой высоты скорость тела, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной (§ 68); кинетическая энергия тела перестает меняться, но его потенциальная энергия уменьшается. Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.

Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. е. ее кинетическая энергия, и приращение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.

Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а следовательно и его кинетическая энергия, меньше той, которую он приобрел бы в отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения (за исключением движений в вакууме, например, движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону - в сторону уменьшения полной энергии.

103.1. Автомобиль массы 1000 кг едет со скоростью 18 км/ч.

После выключения двигателя автомобиль проезжает 20 м и останавливается. Какова сила трения, действующая на автомобиль? Силу трения считать постоянной.

103.2. Электровоз тянет поезд по горизонтальному пути и развивает постоянную силу тяги 50 кН; на участке пути длины 1 км скорость поезда возросла от 30 до 40 км/ч. Масса поезда равна 800 т. Определите силу сопротивления, которую испытывает поезд при движении. Силу сопротивления считать постоянной.

103.3. Пуля массы 10 г, вылетевшая из винтовки со скоростью 800 м/с, упала на землю со скоростью 40 м/с. Какая работа против силы сопротивления воздуха совершена при движении пули?

Тело, получив толчок, движется вверх, против силы тяжести. При этом его кинетическая энергия уменьшается. Достигнув верхней точки траектории, тело на миг останавливается и начинает обратный путь вниз.

Но вот другой пример. Тело лежит на горизонтальной негладкой поверхности. Получив толчок, оно начинает двигаться. Из-за действия силы трения кинетическая энергия тела уменьшается. Пройдя некоторое расстояние, тело останавливается, но не на миг, как в примере с брошенным вверх телом. Оно остановится совсем и в обратный путь уже не двинется.

Почему так по-разному ведет себя тело в этих двух как будто бы похожих случаях? Ведь в каждом из них тело движется против некоторой силы, которая совершает отрицательную работу, что и приводит к уменьшению кинетической энергии. Все дело в том, что в первом примере кинетическая энергия, постепенно уменьшаясь, превращается в потенциальную энергию взаимодействия тела и Земли. За счет этой энергии и совершается работа при движении тела вниз. В случае же движения тела по шероховатой поверхности кинетическая энергия уменьшается, но не превращается в потенциальную энергию. Поэтому и тело не движется в обратном направлении: нет энергии, за счет которой могла бы быть совершена работа при таком перемещении.

Выходит, что, когда на тело действует сила трения (сама но себе или вместе с другими силами), нарушается закон сохранения энергии: кинетическая энергия уменьшается, а потенциальная энергия не появляется. Следовательно, полная механическая энергия уменьшается.

Такое уменьшение механической энергии мы наблюдаем даже при движении падающего на Землю тела, если падение происходит

не в вакууме, а в воздухе. При этом движении потенциальная энергия тела уменьшается на величину как и при движении в пустоте. Но скорость тела, когда оно достигнет поверхности Земли, будет меньше, чем при свободном падении. Меньшей будет и его кинетическая энергия, так что она уже не будет равна убыли потенциальной энергии. За счет потерянной энергии была совершена работа против силы сопротивления воздуха. Хотя мы и знаем, куда пропала механическая энергия, она все-таки исчезла и закон сохранения энергии оказывается как будто нарушенным.

Но оказывается, что нарушение закона сохранения энергии здесь только кажущееся. Дело в том, что трение одного тела о другое всегда приводит к нагреванию обоих тел, к повышению их температуры. Из курса физики VII класса известно, что температура тел определяется кинетической энергией движущихся молекул или атомов, из которых состоят все тела. Поэтому при нагревании трущихся тел увеличивается энергия движения молекул тела, или, как говорят, внутренняя энергия тела. Не происходит ли это увеличение внутренней энергии как раз за счет «теряющейся» кинетической энергии движения всего тела? Тщательные измерения показали, что когда движущиеся тела из-за действия силы трения уменьшают свою кинетическую энергию, их внутренняя энергия (энергия движения модекул в теле) в самом деле увеличивается ровно на столько, на сколько уменьшается механическая энергия. Следовательно, механическая энергия хотя и уменьшается, но не теряется бесследно, а только переходит в энергию движущихся молекул.

Мы приходим, таким образом, к очень важному выводу, что возможно не только превращение энергии из потенциальной в кинетическую и обратно. Кинетическая энергия может превращаться в немеханическую форму энергии - во внутреннюю энергию движения частиц, составляющих тело. Энергия и замечательна тем, что она может иметь различные формы: кинетическую, потенциальную, внутреннюю и много других форм, с которыми вы ознакомитесь позже. А закон сохранения энергии означает, что сохраняется сумма всех видов энергии тела. И всякий раз, когда при каком-нибудь процессе или явлении наблюдается «пропажа» какого-нибудь вида энергии, можно быть уверенным, что в этом процессе появилась энергия какого-нибудь другого вида.

Упражнение 59

1. Как изменяется механическая энергия тела, когда на него действует сила трения скольжения?

1. На движущееся по горизонтальной плоскости тело на протяжении пути длиной 15 м действует сила трения, равная 100 н. На сколько изменилась механическая энергия тела? Какая именно энергия (кинетическая или потенциальная) изменилась?

3. Парашютист массой 70 кг после прыжка с самолета движется сначала ускоренно, а затем, начиная с высоты и до приземления,

равномерно со скоростью 6 м/сек. Какая работа совершена силой сопротивления воздуха за время равномерного движения?

4. Тело массой 2 кг падает с высоты 240 м и проникает в грунт на глубину 0,2 м. Сила трения тела о грунт равна 10 000 н. Совершало ли тело свободное падение или двигалось в воздухе?

5. Существует ли закон сохранения кинетической энергии?

6. Существует ли закон сохранения потенциальной энергии?

7. Пуля массой 10 г, летящая в горизонтальном направлении со скоростью 600 м/сек, попадает в деревянный брус массой 2 кг и застревает в нем. При этом и пуля, и брус нагреваются. Какая энергия идет на нагревание? Силой сопротивления воздуха пренебречь.

При относительном движении одного тела по поверхности другого возникают силы трения, то есть тела взаимодействуют друг с другом. Однако этот вид взаимодействия принципиально отличается от рассмотренных ранее. Наиболее существенным отличием является тот факт, что сила взаимодействия определяется не взаимным расположением тел, а их относительной скоростью. Следовательно, работа этих сил зависит не только от начального и конечного положения тел, но и от формы траектории, от скорости перемещения. Иными словами, силы трения не являются потенциальными.
 Рассмотрим подробнее работу различных видов трения.
 Самой простой случай − трение покоя. Достаточно сказать, что при отсутствии перемещения работа равна нулю, поэтому трение покоя работы не совершает.
 При движении одного тела по поверхности другого возникает сила сухого трения. По закону Кулона-Амонтона, величина силы трения постоянна и направлена в сторону, противоположную скорости движения. Следовательно, в любой момент времени, в любой точке траектории векторы скорости и силы трения направлены в противоположные стороны, угол между ними равен 180° (вспомните cos180° = −1 ). Таким образом, работа силы трения равна произведению силы трения на длину траектории S :
A mp = −F mp S . (1)
 Между двумя точками можно проложить сколько угодно траекторий, длины которых могут изменяться в широких пределах, при движении по каждой из этих траекторий сила трения будет совершать различную работу.
 Использование понятия работы оказывается полезным и при наличии сил трения. Рассмотрим простой пример. Пусть на горизонтальной поверхности находится брусок, которому толчком сообщили скорость v o . Найдем, какой путь пройдет брусок до остановки при наличии сухого трения, коэффициент которого равен μ . Так как при остановке кинетическая энергия обращается в нуль, то изменение кинетической энергии тела равно:

По теореме о кинетической энергии, изменение последней равно работе внешних сил. Единственной силой, совершающей работу, является сила трения, которая равна в данном случае:
А = −μmgS .
Приравнивая эти выражения, легко находим путь до остановки:
S = v o 2 /(2μg) .
 Для того чтобы рассматриваемый брусок двигался по горизонтальной поверхности с постоянной скоростью, к нему необходимо прикладывать постоянную, горизонтально направленную силу F равную по модулю силе трения. Эта внешняя сила будет совершать положительную работу А , равную по модулю работе силы трения. Кинетическая энергия бруска при таком движении возрастать не будет. Заметим, что противоречия с теоремой о кинетической энергии в этом утверждении нет − так, суммарная внешняя сила, действующая на брусок, равна нулю. Тем не менее необходимо твердо уяснить, что работа всякой силы есть мера перехода энергии из одной формы в другую, поэтому следует определить, какие изменения с системой (бруском и поверхностью) произошли в результате совершенной работы. Ответ известен: произошло нагревание как поверхности, так и бруска. Иными словами, работа внешней силы пошла на увеличение внутренней, тепловой энергии. Аналогично, при торможении начальная кинетическая энергия бруска перешла во внутреннюю энергию. В любом случае работа силы трения приводит к увеличению тепловой энергии.
 При движении в вязкой среде на тело действует сила сопротивления, зависящая от скорости и направленная в сторону, противоположную вектору скорости, поэтому работа этих сил всегда отрицательна, причем зависит от траектории движения тела. Следовательно, силы вязкого трения не являются потенциальными. Преобразования энергии, происходящие при наличии вязкого трения, аналогичны рассмотренным ранее, правда, их расчет усложняется зависимостью сил от скорости. Не потенциальные силы, приводящие к увеличению внутренней энергии, называются диссипативными 1 . Примерами таких сил являются силы трения.