Использование солнечной энергии на Земле. Перспективы использования энергии Солнца на Земле. Использование солнечной энергии

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта, энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее.

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».

Гелиоэнергетика – получение солнечной энергии путем накапливания ее с помощью специальных установок. Сегодня ведется активное развитие солнечной энергетики в России. Ученые страны занимаются вопросами изучения возможностей получения энергоносителей уже много лет. Но особенно тщательно данному вопросу посвящается работа с 2000 года.

На данный момент изобретены и успешно используются различные системы и установки, позволяющие накапливать энергию солнца и преобразовывать ее в энергоносители. Фотоэлектрические комплексы работают от рассеянного солнечного света. Причем мощность установки можно регулировать в зависимости от нужд пользователя. Простое добавление секции фотопреобразователя способно существенно увеличить полезный коэффициент действия, тем самым обеспечить получение необходимого количества энергии.

Сегодняшние перспективы солнечной энергетики

Вопросам усовершенствования механизма использования природной энергии уделяется много внимания современным человеком. Именно поэтому перспективы солнечной энергетики для будущего весьма высоки. Уже в ближайшие годы, по заверению специалистов, мир будет использовать природный ресурс в полной мере, обеспечивая для себя неиссякаемое получение энергоносителей.

Для мировой общественности развитие этой промышленной отрасли является приоритетным. Причин тому несколько. А именно:

  • возможность использования природы для получения энергии;
  • экологическая чистота получаемого продукта;
  • относительная дешевизна;
  • абсолютная безопасность для окружающей среды;
  • минимальные затраты на оборудование (в сравнении с получаемым результатом).

Иными словами, энергия, получаемая из солнечных лучей, имеет для человечества в целом только положительные стороны. Современное развитие технических возможностей дает отличные перспективы – разрабатываемое оборудование способно преобразовывать солнечную энергию с минимальными затратами на работу.

Важно и то, что солнечные установки очень просты в эксплуатации. Они легко монтируются, их несложно ремонтировать и видоизменять, подстраивая под собственные нужды. Фотопреобразователи занимают немного места, их монтируют на крышах зданий. Кроме того, накапливать энергию они способны даже в непогоду.

Ученые пришли к выводу, что количество солнечного света, попадающего на земную поверхность всего за одну неделю, в сотни раз превышает энергию, возможную к получению от всех известных земных энергоносителей (газ, уголь, дерево). Это значит, что человек может всего за 7 дней получить столько энергии, сколько способны дать, например, несколько тонн угля.

Будущее за солнечной энергетикой

Такое утверждение делают международные специалисты. Учитывая возможности, которые дает рассеянный солнечный свет, сомневаться в верности такого мнения не приходится. Несложно убедиться в этом на простом примере.

Для получения одной тонны угля требуются колоссальные затраты, состоящие из времени, человеческого труда и использования специального оборудования. Несложно сосчитать, в какую сумму обходится стране каждая тонна твердотопливного материала.

Что происходит в случае с солнечной энергией? Требуется только однажды установить накопитель (батарею, комплекс, систему), и получение энергии происходит постоянно, без прямого участия человека. То есть, чтобы обогреть жилое помещение или получить бесперебойное электропитание, пользователю не приходится постоянно тратить время, силы и финансовые средства.

В мире будущее солнечной энергетики рассматривается как довольно радужное. И на то есть причины. За последние годы специалистам удалось существенно повысить качество «приемников» солнечной энергии и повысить их конверсию. Как результат, человеку доступны сверхмощные солнечные батареи, отличающиеся высокой надежностью и малыми габаритами.

Альтернативный источник получения энергоносителей позволит человечеству решить проблемы с сохранением окружающей среды. Не стоит забывать и об исчерпывающихся залежах других материалов: угля, газа, дерева. Солнечные лучи – настоящий друг человека.

Поиск альтернативных источников энергии волнует прогрессивное научное сообщество не первый год. Солнечная энергетика считается популярным и наиболее безвредным из способов добычи электроэнергии. Солнце является основным источником для получения экологической, регулярно . В этой статье, мы узнаем о преобразовании уф лучей в электричество, в каких регионах нашей страны активно используется данная методика и каковы особенности ее развития в будущем.

Альтернативный энергетический источник

Из преобразованного тепла нашего светила можно получить основные виды энергии, которые ежедневно используется человеком по всему миру. Рассмотрим основные категории получения электроэнергии:

  1. Элементы фотоэлектрики. Их используют при изготовлении , которые являются приемниками природных лучей в системах . Панели отличаются друг от друга по структуре, мощности, габаритам. Они могут быть монокристаллическими, с кремневым напылением, поликристаллическими.
  2. Генератор термоэлектрический. Посредством этого техустройства из энергии лучей добывается электричество. Алгоритм действия заключается в преобразовании разнящихся температур, раскиданных по разным местам агрегата.

Получение тепловой энергии

Энергия солнца перерабатывается в тепло благодаря применению многовариантных конфигураций:

  • Вакуумные коллекторы. Работают они так: спецжидкость, нагреваемая лучами, испаряется по достижению конкретных параметров. Энергия полученного пара передаются носителю тепла. После отдачи энергии, пар конденсируется, процесс возобновляется по кругу.
  • Коллекторы плоские, изготовленные на основе абсорбера со стековым покрытием, теплоизоляционного каркаса, обеспечивающими вход, выход теплоносителя. Работа обеспечивается за счет поглощения лучей специальной поверхностью. Они фокусируются, концентрируются под воздействием линзы, перенаправляются на устройство, которое передает энергию солнца потребителю через теплоноситель.

Применение солнечной генерации в повседневной жизни

Фотовольтарика - один из основных путей переработки природного тепла в необходимую человечеству электроэнергию. Данный эффект осуществляется таким образом: электроны, поглощающие энергию частиц света, приводятся в движение, создавая электронапряжение.

Солнечные панели (батареи) функционируют на базе вышеописанного процесса. В основе этих конструкций заключены элементы, перерабатывающие излучение в электричество. Они практичны, отличаются высокими эксплуатационными характеристиками. Панели не восприимчивы к температурным колебаниям и осадкам.

Развитие солнечной энергетики позволило применять панели в качестве источников питания для домов, в медицинской области, в целях облагораживания города. Современные батареи отличаются обширным выбором текстур и оттенков. Все меньше они напоминают стандартные синие батареи, ими можно оформить крышу дома, не нарушая общий стиль постройки.

Новости не обошлись без новинки от знаменитого бренда «Тесла». Производитель не ограничился панелями, а разработал кровельный материал, способный полноценно перерабатывать солнечное излучение. К примеру, черепица «Солар Руф» со встроенными солнечными модулями. Она выполнена в разнообразных вариациях, характеризуется пожизненной гарантией и запасом прочности.

Перспектива развития на территории России

Эко источники получили свое распространение во многих мировых государствах. Наша страна не отстает от заданной тенденции, напротив, распространяется стремительными темпами. Это объясняется 4 причинами:

  • Разработка технологий, позволяющих значительно сократить стоимость оборудования.
  • Желание использовать независимые энергетические источники среди населения.
  • Чистое и безопасное производство.
  • Постоянное возобновление энергоисточника.

Приоритетными для «зеленой» энергетики считаются южные регионы РФ - Ставрополье, Краснодарский, Дальневосточный край, Кавказ, юг Сибири.

Каждый регион отличается от другого по инсоляции, которая зависит от времени года, длительности дня. Изучив новости развития солнечной энергетики за предшествующий год, мы можем увидеть мощность российских эко электростанций, которая составила более 75 Мегаватт.

В каких регионах используются ЭКО-электростанции?

Список станций, активно функционирующих по шести областям:

  • Оренбургский край: 2 станции с мощностью 25Мвт и 5МВт;
  • Башкортостан: станции Бугульчанская (15МВт и 20 МВт);
  • Алтай: Усть-Канская и Кош-Агачская (5 и 10 ВМт);
  • Крым: тринадцать станций мощностью свыше 289 Мегаватт;
  • Хакасия: Абакансакая;
  • Белгородский регион: станция Альтэнерго.

На 2018 год в фазе проектов, на этапах строительства находятся станции в следующих областях: Астраханская, Липецкая, Омская, Самарская, Челябинская, Саратовская, Иркутская, Волгоградская. Дополнительно: Дагестан, Калмыкия, Башкортостан и Забайкалье.

Где используется?

В целом, мощность, прибывающих процессе строительства станций, составит более тысячи Мегаватт. В повседневности регулярно эксплуатируются гелиоколлекторы, гелиотермальные, термоэлектрические генераторы, которые устанавливаются на заводах, предприятиях.

Новости солнечной энергетики более чем благоприятные. Совокупная мощь проектируемых установок, их широко распространение от юга до Сибири считается главным показателем мобильного развития альтернативной энергетики.

Применение в быту экоэнергии

Гелиоэнергетика - распространенный и передовой тип, подходящий для бытового применения в виде электрического источника обогрева жилых объектов, где используют:

  1. Электростанции, работающие от солнца, выпускаемые зарубежными и отечественными промпредприятиями. Агрегаты поступают в продажу с разным запасом мощности, в нескольких типах комплектации.
  2. Теплонасосы. Предназначены для подогрева бассейнов, обеспечения горячей водой, нагрева помещения.
  3. Для снабжения горячей водой и отопления домовых систем используют гелиоколлекторы, в частности наиболее действенными в этой сфере являются вакуумные трубчатые агрегаты.

Достоинства и недостатки

К плюсам относятся: производственная доступность, низкая себестоимость добычи, неисчерпаемость энергетического источника, безопасность установки конструкции. Кроме того, отрасль имеет неплохие перспективы, так как параллельно с ней разрабатываются технологии, материалы повышенных характеристик.

К отрицательным аспектам относятся: недостаточный КПД, дорогостоящее оборудование, зависимость от сезонности, георасположения, суток, погоды.

Для обеспечения комфортной жизни населения и развития индустриальных отраслей в России необходим внушительный энергозапас. Поэтому, независимые источники энергоснабжения все больше завоевывают пространство страны, обеспечивая теплом и электричеством отдаленные регионы.