Энергетическая проблема человечества и пути ее решения. Глобальные проблемы человечества

Это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь). Но как глобальная проблеманехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14, 5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики. Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет свое значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса - увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран - экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Обеспеченность мирового хозяйства топливно-энергетическими ресурсами

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы, приведшие к открытию и освоению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа - на 62 года, а нефти - на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1, 2 трлн т, то к концу 90-х гг. они выросли до 1, 75 трлн т).

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Основные пути решения глобальной энергетической проблемы

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15, 2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения этого производства (Великобритания). Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов.

На этой основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие и внедрение энергосберегающих технологий, придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

В современных условиях тонна сбереженного в результате сберегающих мер энергоносителя обходится в 3-4 раза дешевле, чем тонна дополнительно добытого. Это обстоятельство явилось для многих стран мощным стимулом повышения эффективности использования энергоносителей. За последнюю четверть XX в. энергоемкость хозяйства США снизилась вдвое, а Германии - в 2, 5 раза.

Под воздействием энергетического кризиса развитые страны в 70-80-х гг. провели масштабную структурную перестройку экономики в направлении снижения доли энергоемких производств. Так, энергоемкость машиностроения и особенно сферы услугв 8-10 раз ниже, чем в ТЭК или в металлургии. Энергоемкие производства сворачивались и переводились в развивающиеся страны. Структурная перестройка в направлении энергосбережения приносит до 20% экономии топливно-энергетических ресурсов в расчете на единицу ВВП.

В то же время многие государства с формирующимися рынками (Россия, Украина, Китай, Индия) продолжают развивать энергоемкие производства (черная и цветная металлургия, химическая промышленность и др.), а также использовать устаревшие технологии. Более того, в этих странах следует ожидать роста энергопотребления как в связи с повышением жизненного уровня и изменением образа жизни населения, так и с нехваткой у многих из этих стран средств на снижение энергоемкости хозяйства. Поэтому в современных условиях именно в странах с формирующимися рынками происходит рост потребления энергетических ресурсов, тогда как в развитых странах потребление сохраняется на относительно стабильном уровне. Но необходимо иметь в виду, что энергосбережение в наибольшей степени проявило себя в промышленности, но под влиянием дешевой нефти 90-х гг. слабо сказывается на транспорте.

Таким образом, глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует. Тем не менее проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

В конце ХХ века обозначилась проблема исчерпаемости и нехватки природных ресурсов. Особенно остро стоит проблема энергетической безопасности и обеспеченности топливом.

Об энергетической проблеме как глобальной заговорили после энергетического кризиса 1972-1973 гг., когда в результате скоординированных действий государств-членов ОПЕК цена на продаваемую ими сырую нефть повысилась в 10 раз. Аналогичные действия, но в более скром­ных масштабах (страны — члены ОПЕК не смогли преодолеть внутренние конкурентные противоречия), были предприняты в самом начале 80-х гг. Это позволило говорить о второй волне ми­рового энергетического кризиса. В результате за 1972-1981 гг. цены на нефть выросли в 14,5 раза. В литературе того времени это было названо «мировым нефтяным шоком», который озна­меновал конец эры дешевой нефти и вызвал цепную реакцию по­дорожания различных других видов сырья. Некоторые аналитики тех лет расценивали подобные события как свидетельство исто­щения мировых невозобновимых природных ресурсов и вступ­ления человечества в эпоху длительного энергетического и сы­рьевого «голода».

Энергетический и сырьевой кризисы 70-80-х гг.

несли в себе и положительные моменты. Во-первых, сплоченные действия по­ставщиков природных ресурсов из развивающихся стран позво­ляли странам-аутсайдерам в отношении отдельных соглашений и организаций стран — экспортеров сырья проводить более актив­ную внешнеторговую сырьевую политику. Так, одним из круп­нейших экспортеров нефти и некоторых других видов энергети­ческого и минерального сырья стал бывший Советский Союз.

Во-вторых, кризисы дали импульс развитию энергосберегаю­щих и материалосберегающих технологий, усилению режима эко­номии сырья, ускорению структурной перестройки экономики. Эти меры, предпринятые прежде всего развитыми странами, по­зволили в значительной степени смягчить последствия энергосы­рьевого кризиса. В частности, только за 70-80-е гг. энергоемкость производства в развитых странах снизилась более чем на 1/4.

В–третьих, повышенное внимание стало уделяться использованию аль­тернативных материалов и источников энергии, например, атомной. В насто­ящее время в общемировом производстве электроэнергии доля АЭС составляет 25%.

В-четвертых, под влиянием кризиса стали проводиться крупно­масштабные геолого-разведочные работы, приведшие к открытию новых нефтегазовых месторождений, а также экономически рен­табельных запасов других видов природного сырья.

Так, новыми крупными районами добычи нефти и газа стали Северное море и Аляска, минерального сырья — Австралия, Канада, ЮАР.

В итоге пессимистические прогнозы обеспеченности мировых потребностей в энергоносителях и минеральном сырье сменились более оптимистическими расчетами, основанными на новых данных.

Глобальная энергетическая проблема и перспективы энергетической безопасности России

Если в 70-х — начале 80-х гг. обеспеченность основными видами энергоносителей оценивалась в 30-35 лет, то в конце 90-х гг. она увеличилась по нефти — до 50 лег, природному газу — до 100 лет, а по углю — даже более 400 лет.

Таким образом, глобальной энергосырьевой проблемы в ее прежнем понимании как опасности абсолютной нехватки ресур­сов в мире сейчас не существует. Но сама по себе проблема на­дежного обеспечения человечества сырьем и энергией остается.

Военно-политическая нестабильность во многих регионах мира, прежде всего в развивающихся странах (например, кризис вокруг Ирака), вносят коррективы в, казалось бы, про­гнозируемые ситуации, воздействуют на движение мировых цен на сырьевые товары, в том числе на энергоносители.

В настоящее время решение проблемы ресурсов и энергообес­печения зависят, во-первых, от динамики, спроса, ценовой элас­тичности на уже известные запасы и ресурсы; во-вторых, от из­меняющихся под влиянием научно-технического прогресса по­требностей в энергетических и минеральных ресурсах; в-третьих, от возможностей их замены альтернативными источниками сырья и энергии и уровня цен на заменители; в-четвертых, от возможных новых технологических подходов к решению глобальной энерго­сырьевой проблемы, обеспечить которые может непрерывный на­учно-технический прогресс.

Предыдущая55565758596061626364656667686970Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Глобальные проблемы и причины их возникновения

Глобализация мировых хозяйственных связей обостряет глобальные проблемы человечества, которые можно определить как комплекс связей и отношений между государствами и социальными системами, обществом и природой в общепланетарном масштабе, которые затрагивают жизненные интересы народов всех стран мира и могут быть решены лишь в результате их взаимодействия

Классификация глобальных проблем:

1. Политические проблемы (недопущение мировой ядерной войны и обеспечения стабильного мира, разоружения, военные и региональные конфликты).

2. Природно-экологические проблемы (необходимость эффективной и комплексной охраны окружающей среды, энергетическая, сырьевая, продовольственная, климатическая, борьба с болезнями, проблемы мирового океана и т.д.).

3. Социально-экономические проблемы (стабильность развития мирового сообщества, ликвидация отсталости развивающихся стран, проблема развития человека, преступность, стихийные бедствия, беженцы, безработица, бедность и др.).

4. Научные проблемы освоения космического пространства, долгосрочное прогнозирование и т.д.).

Демографическая проблема . Наиболее распространенной причиной обострения глобальных проблем является интенсивный рост в последние годы народонаселения планеты, или, так называемый, демографический бум, который к тому же сопровождается неравномерностью роста численности населения в разных странах и регионах, причем наибольший прирост населения наблюдается в странах с низким уровнем развития производительных сил. Так, если темп прироста населения в развивающихся странах в течение ХХ в. составлял около 2,5% в год, то в развитых странах не превышал 1%. Это стало причиной того, что в Африке, Азии и Латинской Америке около 1 млрд. чел. живут в условиях абсолютной бедности, около 250 млн. детей хронически недоедают, а от голода и недоедания ежегодно умирает почти 40 млн. чел.

Демографический взрыв вызывает обострение таких глобальных проблем, как продовольственная, экологическая, сырьевая, энергетическая. Важной причиной обострения глобальных проблем с точки зрения материально-вещественного содержания является низкий уровень внедрения ресурсо — и энергосберегающих, а также экологически чистых технологий. Вследствие этого из природного вещества, которое вовлекается в производственный процесс лишь 1,5% принимает форму конечного продукта.

Экологическая проблема . Важной составляющей глобальных проблем есть экологические, связанные с варварским отношением человека к природе, что проявляется в массовой вырубке лесов, уничтожении рек, создании искусственных водохранилищ, загрязнении вредными отходами пресной воды.

По сравнению с началом ХХ в. потребление пресной воды возросло более, чем в 7 раз и в 90-х гг. составляло почти 300 кубометров в год на человека. Учитывая, что четверть человечества испытывает нехватку пресной воды, проблема обеспечения населения качественной питьевой водой выдвигается на первое место. При этом по данным Всемирной организации здравоохранения, возникновение около 80% различных заболеваний связано с потреблением некачественной питьевой воды.

Еще одним признаком экологического кризиса является проблема отходов в результате производственной деятельности человека. Значительные отходы накапливаются в Мировом океане. Океанский планктон ежегодно поглощает около 50 млрд. т углекислого газа, значительная часть которого оседает на дно. Этот процесс существенно влияет на рост содержания углекислого газа в атмосфере планеты.

Пути решения экологической проблемы . Основными путями решения экологической проблемы с точки зрения материально-вещественного содержания общественного способа производства являются:

Быстрое развитие и использование таких основных видов самовосстанавливаемой энергии, как солнечная, ветровая, океаническая, гидроэнергетическая другое;

Структурные изменения в использовании существующих невозобновляемых видов энергии, а именно: увеличение доли угля в энергобалансе при уменьшении доли нефти и газа, поскольку запасы последних на планете значительно меньше, а их ценность для химической промышленности намного больше;

Необходимость создания экологически чистой угольной энергетики, которая бы работала без вредных выбросов газа, что требует значительных государственных расходов на природоохранные мероприятия;

Разработка всеми странами конкретных мер по соблюдению экологических стандартов чистоты воздуха, водных бассейнов, рационального потребления энергии, повышения эффективности своих энергетических систем;

Изучение запасов всех ресурсов с использованием новейших достижений НТП. Как известно, сегодня разведанный неглубокий слой Земли — до 5 км. Поэтому важно открыть новые ресурсы на большей глубине Земли, и на дне Мирового океана;

Интенсивное развитие развивающимися странами собственного сырьевого хозяйства, включая перерабатывающие отрасли хозяйства. Для решения проблемы голода в этих странах необходимо расширять посевные площади, внедрять передовую агротехнику, высокопродуктивное животноводство и растениеводство;

Поиск эффективных методов управления процессом роста народонаселения с целью его стабилизации на уровне 10 млрд. чел. на начало XXII века.;

Приостановление вырубки лесов, особенно тропических, обеспечения их рационального использования;

Формирование экологического мировоззрения у людей, что позволило бы рассматривать все экономические, политические, юридические, социальные, идеологические, национальные, кадровые вопросы как в рамках отдельных стран, так и на межнациональном уровне;

Комплексная разработка законодательства об охране окружающей среды, в том числе об отходах. С этой целью используются налоговые льготы, предоставление субсидий, снижение тарифов на перевозки вторичного сырья и т.д.;

Наращивание экологических инвестиций.

Топливно-энергетическая и сырьевая глобальные проблемы. Использование топливно-энергетических и сырьевых ресурсов на сегодня растет значительными темпами. На каждого жителя планеты производится 2 кВт энергии, а для обеспечения общепризнанных норм качества жизни необходимо 10 кВт. Такой показатель достигнут лишь в развитых странах мира. В связи с этим нерациональное использование энергии в сочетании с ростом народонаселения и неравномерным распределением топливно-энергетических ресурсов разных стран и регионов приводит к необходимости наращивания их производства.

Однако энергетические ресурсы планеты ограничены. При запланированных темпах развития ядерной энергетики суммарные запасы урана будут исчерпаны впервые десятилетия XXI века. Однако, если затраты энергии будут на уровне энергетики теплового барьера, то все запасы невозобновляемых источников энергии сгорят в первые десятилетия. Поэтому с точки зрения материально-вещественного содержания основными причинами обострения топливно-энергетической и сырьевой проблем является рост масштабов вовлечения в производственный процесс природных ресурсов и их ограниченное количество на планете.

Пути решения топливно-энергетической и сырьевой глобальных проблем . Основными путями решения топливно-энергетической и сырьевой проблем с точки зрения материально-вещественного содержания общественного способа производства являются:

Изменение механизма ценообразования на природные ресурсы.

Энергетическая проблема и пути её решения. Перспективы альтернативной энергетики

Так, цены на них в слаборазвитых государствах диктуют крупные ТНК, которые сосредоточили в своих руках контроль над природными богатствами. По данным ЮНКТАД, от трех до шести ТНК контролируют 80-85% мирового рынка меди, 90-95% мирового рынка железной руды, 80% рынка хлопка, пшеницы, кукурузы, кофе, какао другое;

Объединенным усилиям развитых государств противопоставить стратегию объединения действий стран-экспортеров топливно-энергетических и топливных ресурсов. Эта стратегия должна касаться объема добычи всех видов ресурсов, квот их продажи на внешних рынках другое;

Поскольку развитые страны и ТНК пытаются осуществлять лишь первичную обработку минерального сырья в развивающихся странах, то последним необходимо наращивать выпуск готовой продукции, что позволило бы им значительно увеличить доходы от экспорта;

Проведение прогрессивных аграрных преобразований;

Объединение усилий всех стран для решения глобальных проблем, значительное увеличение расходов на устранение экологического кризиса за счет ослабления гонки вооружений и сокращение военных расходов.

Использование комплекса экономических мер управления качеством окружающей среды, в том числе субсидий и дотаций на изготовление экологически чистой продукции, за выполнение государственных экологических проектов другое.


Вопросы для самоконтроля:

1. Сущность процесса глобализации и его признаки.

2. Финансовая глобализация.

3. Ключевые элементы финансовой революции.

4. Глобальные проблемы и причины их возникновения.

5. Классификация глобальных проблем.

6. Пути решения основных глобальных проблем.

7. Международное регулирование глобальных проблем.

Тема 17. Международное регулирование глобальных проблем

План:

1. Международные организации системы ООН.
2. Организации системы ОЭСР.
3.

Международное энергетическое агентство (МЭА).
4. Агентство по ядерной энергии (АЯЭ).
5. Совет Европы. Организация по безопасности и сотрудничеству в Европе (ОБСЕ).
6. Лига арабских государств, Исламская конференция.
7. Мировой банк. Конференция ООН по торговле и развитию (ЮНКТАД).

Борьба за мировое господство и вражда между ведущими странами мира привели к гибели первой модели глобализирующегося мира, которая возникла в начале ХХ ст. (после Первой мировой войны и серии разрушительных революций), для предупреждения новых катаклизмов была организована Лига Наций. Она была создана в 1919 году по инициативе стран-победителей в войне Франции и Великобритании.

В нее вошли более 30 стран. Однако США не вошли в эту организацию, Германия и Италия вышли из нее в 1934 году, уже готовясь к будущей агрессии. После выхода фашистских государств СССР вошел в Лигу Наций, но в 1939 году был исключен из нее за агрессию против Финляндии. Лига Наций не выполнила своей цели и фактически прекратила свое существование. Началась Вторая мировая война.

После ее окончания государства-победители снова сделали попытку создания международной организации, способной регулировать отношения между странами и решать мировые проблемы. В 1945 г. была создана Организация Объединенных Наций (ООН), а годом ранее на Бреттон-Вудской конференции был организован Международный валютный фонд и Всемирный банк. На сегодня в системе международных организаций насчитывается более 4 тыс., из которых более 300 — межгосударственные.

Международные организации можно разделить по нескольким принципам:

1. Межгосударственные (межправительственные) и негосударственные. Подавляющее большинство международных организаций — негосударственные. Среди них большое количество разнообразных ассоциаций, союзов и фондов.

2. Универсальные, открытые для всех государств, и специализированные, например, региональные или отраслевые международные организации.

3. Организации общей компетенции, охватывающие все сферы политических, экономических, социальных и культурных отношений (ООН, Совет Европы, Лига арабских государств), и специальной компетенции, осуществляющих сотрудничество в любой определенной сфере (Всемирный почтовый союз, Международная организация труда, Всемирная организация здравоохранения).

4. Межгосударственные и надгосударственные организации, решение которых в отличие от решений межгосударственных организаций, непосредственно распространяются на физических и юридических лиц государств-членов организаций (например, Решение ЕС обязательны для всех лиц в странах ЕС).

5. Открытые организации, к которым можно свободно вступать, и закрытые, вступление в которых происходит по приглашению первооснователей (например, НАТО).

Международные организации можно классифицировать по направлениям деятельности и объектам регулирования. В соответствии со следующим классификационным признаком международные экономические организации можно разделить на:

а) организации, предназначенные для решения комплексных политических, экономических, социальных и экологических проблем. Сюда относят организации системы ООН, ОЭСР, Совет Европы и др.;

б) организации, которые регулируют мировые финансовые рынки и международные валютно-финансовые отношения (МВФ, группа Всемирного банка и др.);

в) организации, которые регулируют товарные рынки и международные торговые отношения (ВТО, ОПЕК и др.);

г) региональные международные организации (НАФТА, ЕС и др.).

Экстенсивный путь решения энергетической проблемы предполагаетдальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения этого производства (Великобритания). Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов.

На этой основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие ивнедрение энергосберегающих технологий, придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

В современных условиях тонна сбереженного в результате сберегающих мер энергоносителя обходится в 3-4 раза дешевле, чем тонна дополнительно добытого. Это обстоятельство явилось для многих стран мощным стимулом повышения эффективности использования энергоносителей. За последнюю четверть XX в. энергоемкость хозяйства США снизилась вдвое, а Германии - в 2,5 раза.

Под воздействием энергетического кризиса развитые страны в 70-80-х гг. провели масштабную структурную перестройку экономики в направлении снижения доли энергоемких производств. Так, энергоемкость машиностроения и особенно сферы услуг в 8-10 раз ниже, чем в ТЭК или в металлургии. Энергоемкие производства сворачивались и переводились в развивающиеся страны. Структурная перестройка в направлении энергосбережения приносит до 20% экономии топливно-энергетических ресурсов в расчете на единицу ВВП.

Важным резервом повышения эффективности использования энергии является совершенствование технологических процессов функционирования аппаратов и оборудования. Несмотря на то что это направление является весьма капиталоемким, тем не менее эти затраты в 2-3 раза меньше расходов, необходимых для эквивалентного повышения добычи (производства) топлива и энергии. Основные усилия в этой сфере направлены на совершенствование двигателей и всего процесса использования топлива.

В то же время многие государства с формирующимися рынками (Россия, Украина, Китай, Индия) продолжают развивать энергоемкие производства (черная и цветная металлургия, химическая промышленность и др.), а также использовать устаревшие технологии. Более того, в этих странах следует ожидать роста энергопотребления как в связи с повышением жизненного уровня и изменением образа жизни населения, так и с нехваткой у многих из этих стран средств на снижение энергоемкости хозяйства. Поэтому в современных условиях именно в странах с формирующимися рынками происходит рост потребления энергетических ресурсов, тогда как в развитых странах потребление сохраняется на относительно стабильном уровне. Но необходимо иметь в виду, что энергосбережение в наибольшей степени проявило себя в промышленности, но под влиянием дешевой нефти 90-х гг.

Глобальные проблемы человечества

слабо сказывается на транспорте.

На современном этапе и еще на долгие годы вперед решение глобальной энергетической проблемы будет зависеть от степени снижения энергоемкости экономики, т.е. от расхода энергии на единицу произведенного ВВП.

Таким образом, глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует.

Тем не менее проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

Литература

1. Вернадский В.И. Биосфера. М.: Мысль, 1967

2. Вернадский В.И. Живое вещество. М.: Наука, 1976

3. Вернадский В.И. Химическое строение биосферы Земли и ее окружения, М.: Наука, 1965

4. Биосфера: Сб./под ред. М.С. Гилярова. М.: Мир, 1972

5. Вернадский В.И. Очерки геохимии. М.: Наука, 1983

6. Каталог биосферы. М.: Мысль, 1991

7. Медоуз Д.Х., Медоуз Д.Л., Рандерс И. За пределами роста – М.: Прогресс Пангея, 1994

⇐ Предыдущая123

Читайте также:

Сегодня в мире топливо пока добывается, электростанции работают безостановочно и мировое хозяйство функционирует в убыстряющемся режиме, однако энергетическая проблема остается одной из наиболее острых.
Это объясняется, во-первых, растущим разрывом между высокими темпами развития энергоемких производств развитых (а в ближайшей перспективе и развивающихся) стран и запасами невозобновимых энергоресурсов (нефть, газ, уголь); во-вторых, негативными экологическими последствиями развития энергетики при сохранении традиционной структуры топливноэнергетического баланса (ТЭБ), при резком преобладании загрязняющих видов топлива (около 85% ТЭБ). Оба эти аспекта тесно взаимосвязаны, так как применение возобновимых (альтернативных) источников энергии могло бы значительно облегчить и ресурсную и экологическую напряженность в мире.
Бурно развивающаяся экономика на рубеже XX-XXI столетий требует все больших энергетических затрат. Наука предупреждает, что при современных объемах энергопотребления разведанных запасов органического топлива на Земле хватит примерно на 150 лет, в том числе нефти - на 35, газа - на 50 и угля - на 425 лет (точка отсчета - 1990 г.). Иногда эти прогнозы, высказываемые различными учеными, несколько не совпадают, однако лишь несколько, что, естественно, не придает человечеству дополнительного оптимизма. Таким образом, ограниченность природных запасов углеводородного сырья составляют сегодня главный стержень глобальной энергетической проблемы.
Конечно, по мере расширения поисковых работ достоверные запасы нефти, газа, угля, сланцев возрастают, но это слабое утешение. Во всем мире переходят к разработке месторождений сырья, менее продуктивных или расположенных в труднодоступных районах со сложными природными условиями, что сильно удорожает добычу. Так, эксплуатация нефти с буровых платформ на шельфе Мирового океана обходится гораздо дороже, чем на богатейших месторождениях Ближнего Востока. Во многих странах массовое бурение на нефть и газ ведется уже на глубинах 5-6 км. Истощение ресурсов заставляет вырабатывать ресурсосберегающую политику, широко использовать вторичное сырье.
Впервые об энергетической проблеме заговорили в середине 70х годов, когда на Западе разразился экономический кризис. В течение многих лет нефть оставалась самым дешевым и доступным видом топлива. Благодаря ее дешевизне стоимость энергии долго не изменялась, хотя ее потребление нарастало очень быстро. Арабские нефтедобывающие страны воспользовались продажей нефти как «политическим оружием» в борьбе за свои права и резко повысили на нее цены. Таким образом, основу энергетического кризиса составляли причины не только экономические, но и политические, социальные. Кризис знаменовал собой конец эпохи дешевых источников энергии. Было поставлено под сомнение использование нефти и газа в качестве энергетических ресурсов будущего. Напомним, что эти ресурсы - ценнейшее сырье для химической промышленности.
Итак, сегодня энергетика мира базируется на невозобновляемых источниках энергии - горючих органических и минеральных ископаемых, а также на энергии рек и атома.

Энергетическая проблема

В качестве главных энергоносителей выступают нефть, газ и уголь. Ближайшие перспективы развития энергетики связаны с поисками лучшего соотношения энергоносителей с попытками уменьшить долю жидкого топлива.
Человечество уже сегодня вступило в переходный период - от энергетики, базирующейся на органических природных ресурсах, которые ограничены, к энергетике на практически неисчерпаемой основе (ядерная энергия, солнечная радиация, тепло Земли и т. д.). Для этого периода характерны развитие энергосберегающих технологий и всемерная экономия энергии.

Как же преобразовать гравитационную энергию земли и исключить сжигание природных ресурсов и строительство гидроэлектростанций и других малоэффективных и дорогостоящих сооружений?

Создание гравитационного преобразователя энергии, и это осуществилось.

Предлагаю на суд общественности  конструкцию двигателя, использующего разницу гравитации земли на воздух и жидкость, что дает возможность получения механической энергии, а затем, используя обычный электрогенератор получить электричество. Схема представлена ниже.

Изготовление действующего образца мощностью в 5 МВт завершено на НПО ЗАО "Электромаш" г. Тирасполь.

Затраты на изготовление данного двигателя 1500$ США, в комплекте с генератором и управляющим устройством будет стоить примерно 120 000$ США, производительностью 3,6 млн. кВт/час  в месяц, что при стоимости 5 центов за один кВт, срок окупаемости менее одного месяца, а изготовление один месяц и никаких строительно-монтажных работ.

Гравитационную электростанцию можно установить в помещении 20 м.кв. и высотой 4 метра. Модификация конструкции позволит использовать Грав.Э.С. на всех видах транспорта, включая авиацию, обеспечением электроэнергией теплом: дома, поселки и города без использования ЛЭП, трансформирующих мощностей и других необходимых устройств для передачи энергий, ее можно производить где угодно, при любых обстоятельствах и в любых количествах.

УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ГРАВИТАЦИОННОЙ ЭНЕРГИИ В МЕХАНИЧЕСКУЮ И СПОСОБ ПРЕОБРАЗОВАНИЯ.

Изобретение относится к области механики, а именно к устройствам преобразования гравитационной энергии в механическую энергию.

Техническое решение основано на законе Архимеда о действии на тело, погруженное в жидкость, выталкивающей силы, которая противоположна силе его тяжести и может быть преобразована в механическую энергию.

Устройство для преобразования гравитационной энергии в механическую включает емкость для жидкости, во внутреннем пространстве которой расположены по горизонтали вращающиеся звездочки, соединенные замкнутыми цепями, на которых неподвижно прикреплены емкости-лодочки, при этом верхние звездочки установлены на неподвижной оси, а нижние на подвижной, выходящей за пределы емкости и служащей валом отбора мощности, который снабжен управляемой муфтой сцепления и соединен с повышающим  редуктором.

Способ осуществляют путем подачи в нижнюю часть емкости газа и вытеснения воды из перевернутых вверх дном емкостей-лодочек, этим приводят в движение цепи и вал отбора мощности.

Изобретение относится к области механики, а именно к устройствам для преобразования гравитационной энергии в механическую энергию.

Техническое решение направлено на получение энергии на основе существующего в природе явления, которое позволяет получить экологически чистым способом механическую энергию, и применение ее в хозяйственной деятельности человека.

Сущность технического решения, не имеющего аналогов, заключается в том, что из погруженных в жидкость перевернутых вверх дном емкостей, условно называемых "лодочками", жестко прик4репленных к вертикальной цепи, путем подачи газа снизу вытесняют воду. Пустотелые емкости-лодочки выталкиваются из жидкости под воздействием на них выталкивающей силы, которая противоположна силе тяжести погруженного в жидкость тела и вычисляется по известному закону Архимеда в соответствии формулой:

Цель изобретения — получение энергии за счет выталкивающей силы, действующей на погруженное в жидкость тело.

Указанная цель достигается тем, что устройство для преобразования гравитационной энергии в механическую включающее вертикально установленную емкость, верхняя торцевая поверхность которой имеет свободный выход в атмосферу, а днище выполнено сплошным, 8герметичным, в верхней части емкости горизонтально установлена неподвижная ось со свободно вращающимися на ней звездочками, а в нижней части также горизонтально установлена подвижная ось с жестко посаженными на ней звездочками, каждая верхняя звездочка соединена с нижней звездочкой замкнутой приводной цепью, на которой неподвижно и горизонтально установлены емкости-лодочки, при этом нижняя подвижная ось выходит за пределы емкости и служит валом отбора мощности. Из перевернутых вверх дном емкостей-лодочек, погруженных в жидкость ее вытесняют путем подачи в нижнюю часть емкости газа, приводят в движение цепи и вал отбора мощности.

Сущность технического решения поясняется иллюстрациями, где на фиг. представлено устройство в двух проекциях: слева — главный вид в разрезе; справа — вид сбоку в разрезе.

Устройство для преобразования гравитационной энергии в механическую включает вертикально установленную емкость 1, наполненную жидкостью 2, в верхней части емкости 1 горизонтально установлена неподвижно верхняя ось 3 с подвижными ведомыми звездочками 4, а в нижней части емкости 1 горизонтально установлена подвижная ось 5 с жестко посаженными на ней звездочками 6, каждая верхняя звездочка с нижней соединена замкнутой приводной цепью 7, на которой неподвижно и горизонтально установлены емкости-лодочки 8, при этом нижняя подвижная ось выходит за пределы емкости 1 и служит валом 9 отбора мощности, который посредством управляемой муфты 10 сцепления соединен с редуктором 11 для повышения числа оборотов вала 9 отбора мощности и полезной нагрузкой 12.

Глобальная энергетическая проблема

Под днищем установлен компрессор 13 для подачи газа 14.

Устройство работает следующим образом.

Вертикально установленную емкость 1 заполняют жидкостью 2, затем при включенной  управляемой муфте 10 в емкость 1 подают сжатый воздух 14 от компрессора 13. Образующиеся при этом пузырьки газа 14 в жидкости 2 поднимаются вверх и постепенно заполняют перевернутые вверх дном емкости-лодочки 8, вытесняя из них воду. Под действием выталкивающей силы Архимеда емкости-лодочки 8 передвигаются вверх и увлекают за собой приводные цепи 7, которые линейно перемещаются и приводят во вращение ведущие звездочки 6, жестко посаженные на оси 5, а вместе с ними на оси 5, а вместе с ними и вал 9 отбора мощности, который начинает вращаться на холостом ходу быстрее и быстрее, затем при достижении им определенного числа оборотов включают управляемую муфту 10 сцепления и с ее помощью к приводу подключают полезную нагрузку 12. Устройство переходит в рабочий режим и функционирует без участия человека.

Внедрение предлагаемого технического решения позволит в значительной степени экономить исчерпаемые источники энергии и снижать поступление вредных выбросов в окружающую атмосферу, что будет способствовать сохранению экологически благоприятной среды на планете.

Формула изобретения.

Устройство для преобразования гравитационной энергии в механическую отличающееся  тем, что, с целью получения энергии за счет выталкивающей силы, действующей в гравитационном поле на тело, погруженное в жидкость, включает вертикально стоящую емкость для жидкости, верхняя торцевая поверхность которой имеет свободный выход в атмосферу, а днище выполнено сплошным, герметичным, во внутреннем пространстве которой установлены по горизонтали вращающиеся звездочки, соединенные замкнутыми цепями, к которым неподвижно прикреплены емкости-лодочки, при этом верхние звездочки установлены на неподвижной оси, а нижние на подвижной, выходящей за пределы емкости и служащей валом отбора мощности, который снабжен управляемой муфтой сцепления и соединен с повышающим редуктором.

Устройство по п.1 , отличающийся  тем, что на перевернутых вверх дном емкостей-лодочек, погруженных в жидкость, ее вытесняют путем подачи в нижнюю часть емкости газа, приводят в движение цепи и вал отбора мощности.

Данный гравитационный двигатель изготовленный на 99% в НПО ЗАО «Электромаш» город Тирасполь. Администрацией предприятием остановлено окончание работ и провидение испытаний без каких либо вразумительных объяснений.

Энергетический баланс указанного на фото изделие “Гравитационный Двигатель” с техническими характеристики
Габариты: 1) Длина = 1метр
2) Ширина=1 метр 3) Высота =3 метра
Рабочие емкости объемом в 12 литров кол-во 42 шт.
Расчет мощности данного изделия P= A/t = (F*S)/t =12кг*18шт.*10*1м/1сек.=2160Дж/1сек (мгновенная мощность = 2,160кВт) соответственно в электротехнике мощность изделия определяется потреблением или выработкой энергии в течении часа.

Соответственно мощность данного изделия равняется 2,160кВт* 3600сек = 7776000 кВт или 7,776 МВт

Для работы данного “ Гравитационного двигателя” должен использоваться и в расчетах был применен компрессор мощностью 2,3кВт с производительностью 50 М 3 в час на глубину 10 метров (паспортные данные) так как у нас емкость высотой 3 метра соответственно будет закачиваться в 3 раза больше т.е. 150М 3 воздуха
Работа гравитационного двигателя начинается с запитки от внешнего источника электроэнергии или остаточного давления в ресивере компрессора, далее переходит на автономный режим работы, то есть компрессор запитывается от рабочего генератора.
В расчетах автором было предложено считать линейную скорость движения рабочих емкостей

V=1м/с
Таким образом данный гравитационный двигатель с выше приведенными ТТХ производит 5 МВт электроэнергии в час с запасом.

Обсуждения данного изобретения ведутся в следующих темах:

http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902479
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902396/new
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902313/new
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902631/new
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902751/new
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1390902684/new
http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1233779866

Дата публикации: 28 сентября 2013
Сделать запрос по интересующему вас изобретению

Наша планета и наше общество находятся в процессе непрекращающегося развития, а это требует от нас – людей – своевременно приспосабливаться к изменениям в окружающей среде и условиях жизни. Любые перемены ведут к возникновению новых потребностей в мировом масштабе или в отдельных регионах и использованию новейших технологий для их удовлетворения. Часто оказывается, то, что недавно считалось современным, мгновенно становится устаревшим. Производители должны обладать определенным чутьем на появление новых тенденций, чтобы во время усовершенствовать свою продукцию. Это относится и к трансформаторам, которые, казалось бы, уже не нужно подвергать каким-либо изменениям.

Одно из самых значительных событий за последние несколько десятилетий на планете Земля связано с бурным ростом населения. С 1950 по 2010 оно выросло на 2,7 млрд. человек, а к концу 2011 составило более семи млрд. Более того, ожидается, что рост населения продолжится еще в течение нескольких десятилетий и пойдет на убыль только после 2050 года, к тому времени общее количество людей увеличится еще на 35% и составит 9,2 млрд. человек. Спрос на электроэнергию растет пропорционально росту населения.

Растущая потребность в электроэнергии и электричестве

Кроме увеличения численности население возрастающий спрос на электроэнергию обусловлен становлением развивающихся стран: так, рост ВВП на 1% требует увеличения потребления энергии на 0,6% в среднем. Совокупные расходы на электроэнергию составляют около 7-8 % от общемирового ВВП и представляют собою значительные издержки. Все эти факторы заставляют задуматься об организации высокоэффективных процессов производства и поставки электроэнергии. К тому же, проводя расчеты, важно оценить весь производственный цикл и включить расходы, связанные с энергопотерями и стоимостью оборудования.

Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов. В настоящее время электричество может быть использовано во всех сферах деятельности, так как представляет собой высококачественную форму энергии. К тому же оно не загрязняет окружающую среду. Все это предопределяет рост потребности в электричестве в будущем и его все упрочняющуюся роль на энергетическом рынке. Показательными примерами являются замена нефтяного или газового центрального отопления на электротепловые насосы или внедрение электромобилей.

И хотя суммарный КПД растет, что приводит к сокращению потребления первоначальных энергоресурсов, спрос на саму электроэнергию повышается. В то время как в развитых странах на одного человека в среднем приходится около одного 1 кВт, общемировое потребление составляет только 0,3 кВт. Такая статистика указывает на дальнейший значительный рост потребности в электричестве в развивающихся странах, а значит, и увеличение спроса на оборудование, обеспечивающее высокоэффективную передачу и распределение электроэнергии.

Существует один значительный фактор, определяющий рост потребности в электричестве в мировом масштабе, - это его необходимость для функционирования информационных и телекоммуникационных систем. Современные, большие центры обработки и передачи данных, например, относятся к крупнейшим потребителям электроэнергии.

Урбанизация

Еще одной заметной тенденцией является урбанизация. Все больше и больше людей переезжают из сельской местности в большие города. К 2050 году ожидается, что две трети всего населения будут проживать там, для сравнения: сейчас в городах проживает около половины.
Согласно Отделу народонаселения ООН в настоящее время насчитывается 24 мегаполиса с населением более 10 млн. человек. Обеспечить их всем необходимым: едой, товарами и коммунальными услугами – считается основной задачей современных логистических служб. Это также относится к поставкам электроэнергии. Плотность энерговыделения в местах массовой застройки небоскребами очень высока, поэтому необходимы новые решения для безопасного и надежного проведения электросетей в центрах больших городов. Слишком высокая стоимость недвижимости не позволяет размещать подстанции в домах, поэтому их устанавливают под землей.

Одна из наиболее значимых экологических проблем, которые имеют планетарное значение, связана с действием газов, вызывающих парниковый эффект, и изменением климата. Существует несколько видов эмиссий, которые способствуют этому процессу, однако больше всего опасений вызывает углекислый газ. Чтобы избежать существенного нагревания земной поверхности в ближайшие 20 лет, требуется пересмотреть политику и остановить необратимые изменения климата. В 2010 году общемировые выбросы углекислого газа, связанные с электроэнергетикой резко увеличились на 5,3% до рекордных 30,4 гигатон. Если подобная тенденция продолжится, то ожидается увеличение выбросов до 40 гигатон к 2030 году, а это может стать причиной потепления на 3,5 C° . Тем не менее, согласно 450 сценарию МЭА, ожидается, что выбросы, связанные с энергетикой, достигнут наивысшего показателя к 2020 года, а затем снизятся до 21,5 гигатон к 2035 году.

Рациональное использование электросетей может способствовать сокращению выбросов углекислого газа. Распределительные сети обычно на 95% более эффективны, а производительность трансформаторов распределительной сети выше на 99%. Несмотря на этот факт, огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети. Поэтому даже незначительные изменения в производительности трансформаторов способны существенно сократить выбросы углекислого газа.

Производительность трансформаторов рассматривается либо с точки зрения значения уровня потерь, либо уровня их КПД.

Значения КПД сравниваются при нагрузке 50%. Государственные стандарты, определяющие уровень энергопотерь трансформаторов, в последнее время претерпевают серьезные изменения: правительство и представители энергокомпаний стараются соответствовать своим обязательствам и обязанностям в сфере энергоэффективности и климатических изменений. Для разных стран характерны различные уровни эффективности трансформаторов. Низкий и средний упразднены – все страны переходят на высокий, очень высокий и сверхвысокий уровни. Сверхвысокий КПД могут показывать только трансформаторы с сердечником из аморфного металла.

Огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети.
Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов.

Еще одним ключевым моментом в борьбе против выбросов CO2 является получение электричества с помощью природных ресурсов: энергии ветра, солнца, волн и геотермальных источников. В 2011 году возобновляемые источники энергии (кроме крупных ГЭС) составили 44% дополнительных мощностей нового поколения по всему миру. В том же году общемировые инвестиции в возобновляемы источники энергии и топлива увеличился на 17 % и достиг новых рекордных показателей – 257 млрд. долларов, что в шесть раз превосходит показатели 2004 года. Согласно докладу МАЭ, посвященному перспективам развития мировой энергетики, ожидается, что доля возобновляемых энергоресурсов, обеспечивающих потребность в первичной энергии, возрастет на 8% к 2030 году.

Стабилизация напряжения за счет возобновляемых энергоносителей, традиционно используемая в трансформаторах высокого и среднего напряжения, в настоящее время будет востребована в электросетях среднего и низкого напряжения для обеспечения локальной стабилизации.

Ключевыми движущими силами для роста доли возобновляемых энергоресурсов являются предоставление правительством льгот и снижение затрат на производство. В 2011 году
стоимость фотоэлектрических модулей упала на 50%, стоимость ветряных турбин уменьшилась на 10%. Это сократило разницу в ценах между возобновляемыми источниками и ископаемыми энергоносителями. Если эта тенденция продолжится, то согласно МАЭ к 2020 году или даже раньше будет достигнут сетевой паритет, который позволит технологиям, использующим солнечную энергию, конкурировать на рынке с традиционными ископаемыми энергоносителями.

Затраты на оборудование с учетом всего срока службы

Чтобы определиться, инвестировать или нет, обычно производят расчеты окупаемости вложений, которые должны принимать во внимание не только стоимость отдельного оборудования, но и предполагаемые расходы в течение всего срока его эксплуатации. Затраты на оборудование предполагают первоначальные затраты при его покупке, затраты, связанные с его установкой, управлением, техническим обслуживание и утилизацией, также нужно учитывать затраты на энергопотери. Несмотря на то, что трансформаторы относятся к приборам, обеспечивающим высокий КПД – обычно более 99%, энергетические потери сводятся к приличным финансовым затратам, которые значительно превышают первоначальные. В такой ситуации энергокомпании все чаще используют специально разработанный метод, получивший название общая стоимость издержек (TOC) для того, чтобы определить окупаемость инвестиций. Этот показатель выражает величины потерь на холостом ходу и при нагрузке в денежном эквиваленте. В основном эти величины зависят от затрат на электроэнергию и условий инвестирования предприятия.

Одной из основных задач объединения различных источников генерирования электрической энергии является влияние на качество электроэнергии, особенно полосы напряжения, охватывающей разноплановые местные генераторы и технические условия сетевой нагрузки. В прошлом электроснабжение имело централизованный характер благодаря однонаправленному потоку электроэнергии, и основной проблемой были спады напряжения. Тем не менее, в настоящее время, а в будущем еще в большей степени в связи с применением различных источников генерирования электроэнергии, электропоток становится все более сложным, что ведет не только к спаду напряжения, но его скачкам. А это представляет собой новый уровень регулирования напряжения: традиционно стабилизация напряжения применялась в высоко- и средневольтных трансформаторах, сейчас она необходима и в средне- и низковольтных электросетях для обеспечения местной стабилизации.

Системный контроль

Еще одним развивающимся направлением является системный контроль за распределение электроэнергии, который позволяет операторам организовать надежную распределительную сеть и определять проблемы прежде, чем произойдет поломка. Можно легко установить вид неисправностей и их расположение и сократить время аварийного простоя.
Традиционно трансформаторы распределительной сети считались пассивными элементами оборудования, но в будущем им отведена более активная роль в обеспечении сетей надежностью и эффективностью.

Перспективы на будущее

Рост населения и увеличение потребления энергии – это главные причины выброса углекислого газа, следствием которого являются нежелательные изменения в климате. Для того, чтобы не допустить дальнейшее распространение этого негативного процесса, необходимо использовать энергосберегающие компоненты в электросетях и вводить технологии с низким содержанием углерода.

Человечества с каждым годом приобретает все большие масштабы. Связано это с ростом населения планеты и интенсивным развитием технологий, что обуславливает постоянно растущий уровень потребления энергоресурсов. Несмотря на использование ядерной, альтернативной и гидроэнергии, львиную долю топлива люди продолжают добывать из недр Земли. Нефть, природный газ и уголь являются невозобновляемыми природными энергетическими ресурсами, к настоящему времени их запасы уменьшились до критического уровня.

Начало конца

Глобализация энергетической проблемы человечества началась в 70-х годах прошлого столетия, когда закончилась эра дешевой нефти. Дефицит и резкое подорожание этого вида топлива спровоцировали серьезный кризис в мировой экономике. И хоть стоимость его со временем снизилась, объемы неуклонно сокращаются, поэтому энергетическая и сырьевая проблема человечества становится все острее.

К примеру, только в период с 60-х по 80-е годы ХХ века мировой объем добычи угля составил 40%, нефти - 75%, природного газа - 80% от общего объема этих ресурсов, использованных с начала столетия.

Несмотря на то что в 70-х годах начался дефицит топлива и обнаружилось, что энергетическая проблема - это глобальная проблема человечества, прогнозы не предусматривали роста его потребления. Планировалось, что объемы добычи полезных ископаемых к 2000 году возрастут в 3 раза. Впоследствии, конечно, эти планы были снижены, но в результате крайне расточительной эксплуатации ресурсов, длившейся десятилетиями, на сегодняшний день их практически не осталось.

Основные географические аспекты энергетической проблемы человечества

Одной из причин растущего дефицита топлива является утяжеление условий его добычи и, как следствие, удорожание этого процесса. Если еще несколько десятков лет назад природные богатства лежали на поверхности, то сегодня приходится постоянно увеличивать глубину шахт, газовых и нефтяных скважин. Особенно заметно ухудшились горно-геологические условия залегания энергоресурсов в старых промышленных районах Северной Америки, Западной Европы, России и Украины.

Учитывая географические аспекты энергетической и сырьевой проблем человечества, нужно сказать, что их решение заключается в расширении ресурсных рубежей. Необходимо осваивать новые районы с более легкими горно-геологическими условиями. Таким образом можно снизить себестоимость добычи топлива. При этом следует учитывать, что общая капиталоемкость добычи энергоресурсов в новых местах, как правило, намного выше.

Экономические и геополитические аспекты энергетической и сырьевой проблем человечества

Истощение запасов природного топлива стало причиной возникновения жесточайшей конкурентной борьбы в экономической, политической и геополитической сферах. Гигантские топливные корпорации занимаются разделом топливно-энергетических ресурсов и переделом сфер влияния в этой отрасли, что влечет постоянные колебания цен на мировом рынке газа, угля и нефти. Нестабильность ситуации серьезно усугубляет энергетическую проблему человечества.

Глобальная энергетическая безопасность

Это понятие вошло в обиход в начале 21-го века. Принципы стратегии такой безопасности предусматривают надежное, долгосрочное и экологически приемлемое энергоснабжение, цены на которое будут обоснованы и устраивать страны как экспортирующие, так и импортирующие топливо.

Реализация этой стратегии возможна лишь при условии устранения причин энергетической проблемы человечества и практических мер, направленных на дальнейшее обеспечение мировой экономики как традиционными видами топлива, так и энергией из альтернативных источников. Причем развитию альтернативной энергетики должно быть уделено особое внимание.

Политика энергосбережения

Во времена дешевого топлива во многих странах мира сформировалась очень ресурсоемкая экономика. Прежде всего такое явление наблюдалось в государствах, богатых минеральными ресурсами. Возглавляли этот список Советский Союз, США, Канада, Китай и Австралия. При этом В СССР объем потребления условного топлива был в несколько раз больше, чем в Америке.

Такое положение вещей требовало срочного введения политики энергосбережения в коммунально-бытовом, промышленном, транспортном и прочих секторах экономики. С учетом всех аспектов энергетической и сырьевой проблем человечества начали разрабатываться и внедряться технологии, направленные на снижение удельной энергоемкости ВВП этих стран, и перестраиваться вся экономическая структура мирового хозяйства.

Успехи и неудачи

Наиболее заметных успехов в сфере энергосбережения удалось добиться экономически развитым странам Запада. За первые 15 лет им удалось снизить энергоемкость своего ВВП на 1/3, что повлекло сокращение их доли в мировом потреблении энергоресурсов с 60 до 48 процентов. На сегодняшний день эта тенденция сохраняется, и рост ВВП на Западе опережает растущие объемы потребления топлива.

Значительно хуже обстоят дела в Центрально-Восточной Европе, Китае и странах СНГ. Энергоемкость их экономики снижается очень медленно. Но лидерами экономического антирейтинга являются развивающиеся страны. К примеру, в большинстве африканских и азиатских стран потери попутного топлива (природного газа и нефти) составляют от 80 до 100 процентов.

Реалии и перспективы

Энергетическая проблема человечества и пути ее решения сегодня волнуют весь мир. Для улучшения существующей ситуации вводятся различные технико-технологические новшества. С целью энергосбережения усовершенствуется промышленное и коммунальное оборудование, выпускаются более экономичные автомобили и т. д.

К числу первостепенных макроэкономических мероприятий относится поэтапное изменение самой структуры потребления газа, угля и нефти с перспективой увеличения доли нетрадиционных и возобновляемых энергоресурсов.

Для успешного решения энергетической проблемы человечества необходимо особое внимание уделить развитию и внедрению принципиально новых технологий, доступных на современном

Атомная энергетика

Одним из наиболее перспективных направлений в сфере энергоснабжения является В некоторых развитых странах уже введены в эксплуатацию атомные реакторы нового поколения. Ученые-ядерщики сегодня опять активно обсуждают тему реакторов, работающих на быстрых нейронах, которые, как когда-то предполагалось, станут новой и значительно более эффективной волной атомной энергетики. Однако их разработка была прекращена, но ныне этот вопрос снова стал актуальным.

Использование МГД-генераторов

Прямое преобразование теплоэнергии в электроэнергию без паровых котлов и турбин позволяют выполнять Разработка этого перспективного направления началась еще в начале 70-х годов прошлого века. В 1971 году в Москве был произведен пуск первой опытно-промышленного МГД мощностью 25000 кВт.

Главными достоинствами магнитогидродинамических генераторов являются:

  • высокий КПД;
  • экологичность (отсутствуют вредные выбросы в атмосферу);
  • моментальный запуск.

Криогенный турбогенератор

Принцип работы криогенного генератора заключается в том, что ротор охлаждается за счет чего получается эффект сверхпроводимости. К бесспорным преимуществам этого агрегата относятся высокий КПД, небольшая масса и габариты.

Опытно-промышленный образец криогенного турбогенератора был создан еще в советскую эпоху, а ныне подобные разработки ведутся в Японии, США и других развитых странах.

Водород

Использование водорода в качестве топлива имеет огромные перспективы. По мнению многих специалистов, эта технология поможет решить важнейшие лобальные проблемы человечества - энергетическую и сырьевую проблему. Прежде всего водородное топливо станет альтернативой природным энергоресурсам в машиностроении. Первый был создан японской компанией «Мазда» еще в начале 90-х годов, для него был разработан новый двигатель. Эксперимент оказался довольно удачным, что подтверждает перспективность этого направления.

Электрохимические генераторы

Это топливные элементы, которые также работают на водороде. Горючее пропускают сквозь полимерные мембраны со специальным веществом - катализатором. В результате химической реакции с кислородом сам водород преобразуется в воду, выделяя химическую энергию при сгорании, которая превращается в электрическую.

Двигатели с топливными элементами отличаются максимально высоким КПД (свыше 70 %), что вдвое больше, чем у обычных силовых установок. Плюс к этому они удобны в применении, бесшумны при работе и нетребовательны к ремонту.

Еще недавно топливные элементы имели узкую сферу применения, к примеру в космических исследованиях. Но ныне работы по внедрению электрохимических генераторов активно ведутся в большинстве экономически развитых государств, первое место среди которых занимает Япония. Общая мощность этих агрегатов в мире измеряется миллионами кВт. К примеру, в Нью-Йорке и Токио уже действуют электростанции на таких элементах, а немецкий автопроизводитель «Даймлер-Бенц» первым создал рабочий прототип автомобиля с двигателем, работающим по этому принципу.

Управляемый термоядерный синтез

Уже несколько десятков лет ведутся исследования в области термоядерной энергетики. В основе атомной энергии лежит реакция деления ядер, а термоядерная базируется на обратном процессе - ядра изотопов водорода (дейтерия, трития) сливаются. В процессе ядерного сжигания 1 кг дейтерия количество выделяемой энергии превосходит в 10 миллионов раз аналогичный показатель, получаемый от угля. Результат поистине впечатляющий! Именно поэтому термоядерная энергетика считается одним из наиболее перспективных направлений в решении проблем глобального энергетического дефицита.

Прогнозы

Сегодня существуют различные сценарии развития ситуации в мировой энергетике в будущем. Согласно некоторым из них, к 2060 году глобальное энергопотребление в нефтяном эквиваленте возрастет до 20 млрд тонн. При этом по объемам потребления ныне развивающиеся страны обгонят развитые.

К середине 21-го века должен значительно уменьшиться объем ископаемых видов энергоресурсов, но увеличится доля возобновляемых, в частности ветровых, солнечных, геотермальных и приливных источников энергии.

Сегодня в мире топливо пока добывается, электростанции работают безостановочно и мировое хозяйство функционирует в убыстряющемся режиме, однако энергетическая проблема остается одной из наиболее острых.
Это объясняется, во-первых, растущим разрывом между высокими темпами развития энергоемких производств развитых (а в ближайшей перспективе и развивающихся) стран и запасами невозобновимых энергоресурсов (нефть, газ, уголь); во-вторых, негативными экологическими последствиями развития энергетики при сохранении традиционной структуры топливноэнергетического баланса (ТЭБ), при резком преобладании загрязняющих видов топлива (около 85% ТЭБ). Оба эти аспекта тесно взаимосвязаны, так как применение возобновимых (альтернативных) источников энергии могло бы значительно облегчить и ресурсную и экологическую напряженность в мире.
Бурно развивающаяся экономика на рубеже XX-XXI столетий требует все больших энергетических затрат. Наука предупреждает, что при современных объемах энергопотребления разведанных запасов органического топлива на Земле хватит примерно на 150 лет, в том числе нефти - на 35, газа - на 50 и угля - на 425 лет (точка отсчета - 1990 г.). Иногда эти прогнозы, высказываемые различными учеными, несколько не совпадают, однако лишь несколько, что, естественно, не придает человечеству дополнительного оптимизма. Таким образом, ограниченность природных запасов углеводородного сырья составляют сегодня главный стержень глобальной энергетической проблемы.
Конечно, по мере расширения поисковых работ достоверные запасы нефти, газа, угля, сланцев возрастают, но это слабое утешение. Во всем мире переходят к разработке месторождений сырья, менее продуктивных или расположенных в труднодоступных районах со сложными природными условиями, что сильно удорожает добычу. Так, эксплуатация нефти с буровых платформ на шельфе Мирового океана обходится гораздо дороже, чем на богатейших месторождениях Ближнего Востока. Во многих странах массовое бурение на нефть и газ ведется уже на глубинах 5-6 км. Истощение ресурсов заставляет вырабатывать ресурсосберегающую политику, широко использовать вторичное сырье.
Впервые об энергетической проблеме заговорили в середине 70х годов, когда на Западе разразился экономический кризис. В течение многих лет нефть оставалась самым дешевым и доступным видом топлива. Благодаря ее дешевизне стоимость энергии долго не изменялась, хотя ее потребление нарастало очень быстро. Арабские нефтедобывающие страны воспользовались продажей нефти как «политическим оружием» в борьбе за свои права и резко повысили на нее цены. Таким образом, основу энергетического кризиса составляли причины не только экономические, но и политические, социальные. Кризис знаменовал собой конец эпохи дешевых источников энергии. Было поставлено под сомнение использование нефти и газа в качестве энергетических ресурсов будущего. Напомним, что эти ресурсы - ценнейшее сырье для химической промышленности.
Итак, сегодня энергетика мира базируется на невозобновляемых источниках энергии - горючих органических и минеральных ископаемых, а также на энергии рек и атома. В качестве главных энергоносителей выступают нефть, газ и уголь. Ближайшие перспективы развития энергетики связаны с поисками лучшего соотношения энергоносителей с попытками уменьшить долю жидкого топлива.
Человечество уже сегодня вступило в переходный период - от энергетики, базирующейся на органических природных ресурсах, которые ограничены, к энергетике на практически неисчерпаемой основе (ядерная энергия, солнечная радиация, тепло Земли и т. д.). Для этого периода характерны развитие энергосберегающих технологий и всемерная экономия энергии.

Топливно-энергетическая промышленность включает топливную отрасль (т.е. добычу и переработку различных видов топлива) и электроэнергетику.

Вся история человеческой цивилизации связана с освоением различных видов топлива и энергии. И в эпоху НТР энергетика оказывает огромное влияние на развитие и размещение производства.

Мировое производство и потребление первичных энергоресурсов все время растет: с менее чем 1 млрд. т. у. т. в 1990 году оно увеличилось до 10 млрд. т в 1990 г., а в 2000 г., вероятно, достигнет 14 млрд. т. Этот рост был особенно велик до 70-х годов, когда произошел мировой энергетический кризис (прежде всего - нефтяной). После кризиса темпы роста замедлились.

Существуют большие различия в топливно-энергетической промышленности по регионам и отдельным странам. Большая часть энергоресурсов производится в развивающихся странах и вывозится в США, Западную Европу и Японию.

Энергетическая проблема человечества относится к разряду глобальных и рассматривается обычно как глобальная энергосырьевая проблема. В таком масштабе она впервые проявилась в 70-х гг., когда разразились энергетический и сырьевой кризисы. Энергетический кризис ознаменовал конец эры дешевой нефти и вызвал подорожание сырья. И хотя затем нефть и другие энергоносители вновь подешевели, глобальная проблема обеспечения топливом и сырьем сохраняет свое значение и в наши дни.

Возникновение энергосырьевой проблемы объясняется прежде всего быстрым, взрывным ростом потребления минерального топлива и сырья и масштабами их добычи.

Решение электросырьевой проблемы на современном этапе развития мирового хозяйства должно идти интенсивным путем, который заключается в более рациональном использовании ресурсов или в осуществлении политики ресурсосбережения.

В эпоху дешевого топлива и сырья в большинстве стран мира сложилась ресурсоемкая экономика. В первую очередь это относилось к странам, наиболее богатым минеральными ресурсами. Но сейчас, в результате ресурсосберегающей политики экономически развитых стран Запада, энергоемкость их хозяйства значительно уменьшилась. А развивающиеся страны пока отстают от них в этом отношении. Из экономически развитых стран высокой ресурсоемкостью производства отличаются страны СНГ, ЮАР, Болгария и Австралия.

Мерами, способствующими сбережению ресурсов, должны стать увеличение извлечения из недр топливных и сырьевых ресурсов, а также повышение коэффициента полезного использования уже добытого топлива и сырья. Например, средний мировой уровень полезного использования первичных энергоресурсов - всего 1/3.

Кроме того, в ближайшие десятилетия можно ожидать изменения структуры мирового потребления первичных источников энергии: уменьшения доли нефти и угля в энергопотреблении и рост доли природного газа, гидроэнергии и альтернативных источников энергии.

Это поможет улучшить экологическую ситуацию, так как добыча нефти на шельфе, аварийные выбросы нефти, открытая добыча угля, а также употребление сернистых видов топлива негативно воздействует на природную среду.