Жидкий водород: свойства и применение

Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космонавтике , в качестве ракетного топлива .

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом , Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году , Майкл Фарадей первым получил сжиженный аммиак , американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году , Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовал кондиционер в 1851 году , Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году , Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля - Томсона » и регенеративного охлаждения в 1876 году . В 1885 году польский физик и химик Зигмунд Вро́блевский опубликовал критическую температуру водорода 33 , критическое давление 13.3 атм. и точку кипения при 23 . Впервые водород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, сосуда Дьюара . Первый синтез стабильного изомера жидкого водорода - параводорода - был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году .

Спиновые изомеры водорода

Водород при комнатной температуре состоит на 75 % из спинового изомера , ортоводорода . После производства жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать спонтанной экзотермической реакции его превращения, приводящей к сильному самопроизвольному испарению полученного жидкого водорода. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов , как оксид железа , оксид хрома , активированный уголь , покрытых платиной асбестов , редкоземельных металлов или путём использования урановых или никелевых добавок .

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов . Различные концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например DeepC или BMW H2R ). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объёмной плотности энергии для горения требуется больший объём водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с кислородом в воздухе является вода , но в реальности - как и в случае с обычными ископаемыми энергоносителями - из-за наличия в воздухе молекул азота при его горении образуется также незначительное количество оксидов этого газа.

Препятствия

Один литр «ЖВ» весит всего 0,07 кг . То есть его удельная плотность составляет 70,99 / при 20 . Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду , но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день ). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом («Водородная безопасность») - он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетного топлива , которое используется для реактивного ускорения ракет-носителей и космических аппаратов . В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги . Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульса двигателя за счет уменьшения молекулярного веса , это ещё сокращает эрозию сопла и камеры сгорания .

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4 »), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».

Водород с разными окислителями

Данные приводятся на основании таблиц, опубликованных в США в рамках проекта сбора термодинамических данных «JANAF » (англ. J oint A rmy N avy A ir F orce , «Сборник ВМС и ВВС армии США »), которые широко используются в этих целях. Изначально вычисления производились компанией «Рокетдайн ». При этом делались предположения, что имеет место адиабатическое сгорание, изоэнтропийное расширение в одном направлении и имеет место смещение равновесного состояния. Кроме варианта использования водорода в качестве топлива, приводятся варианты с использованием водорода в качестве рабочего тела, что объясняется его небольшим молекулярным весом . Все данные рассчитаны для давления в камере сгорания («КС »), равного 68,05 атмосферы . Последняя строка таблицы содержит данные для газообразных водорода и кислорода .

Оптимальное расширение от 68.05 атм до условий: поверхности Земли (1 атм) вакуума (0 атм , расширение сопла 40:1)
Окислитель Топливо Комментарий V e r T c d C* V e r T c d C*
LOX H 2 распространено 3816 4.13 2740 0.29 2416 4462 4.83 2978 0.32 2386
H 2 - 49/51 4498 0.87 2558 0.23 2833 5295 0.91 2589 0.24 2850
CH 4 /H 2 92.6/7.4 3126 3.36 3245 0.71 1920 3719 3.63 3287 0.72 1897
F 2 H 2 4036 7.94 3689 0.46 2556 4697 9.74 3985 0.52 2530
H 2 - 65.2/34.0 4256 0.96 1830 0.19 2680
H 2 -Li 60.7/39.3 5050 1.08 1974 0.21 2656
OF 2 H 2 4014 5.92 3311 0.39 2542 4679 7.37 3587 0.44 2499
F 2 /O 2 30/70 H 2 3871 4.80 2954 0.32 2453 4520 5.70 3195 0.36 2417
GOX GH 2 3997 3.29 2576 - 2550 4485 3.92 2862 - 2519
В таблице использованы обозначения: r [-] - массовое соотношение смеси «окислитель/топливо »;
V e [ /сек ] - средняя скорость истечения газов;
C* [ /сек ] - характеристическая скорость ;
T c [°C ] - температура в КС ;
d [ /см ³ ] - средняя плотность топлива и окислителя;

при этом «V e » является той же единицей, что и удельный импульс , но приведена к размерности скорости [ *сек /кг ], а «C* » вычисляется путём умножения давления в камере сгорания на коэффициент расширения площади сопла и последующего деления на массовый расход топлива и окислителя, что дает приращение скорости на единицу массы.

См. также

Опасность

Жидкий водород довольно опасен для человека. Попадание LH на кожу может вызвать обморожение, а вдыхание паров привести к отёку легких.

Напишите отзыв о статье "Жидкий водород"

Примечания

Ссылки

  • , Водородная

Отрывок, характеризующий Жидкий водород

– Господи Иисусе Христе! – проговорила она.
Мавра Кузминишна предлагала внести раненого в дом.
– Господа ничего не скажут… – говорила она. Но надо было избежать подъема на лестницу, и потому раненого внесли во флигель и положили в бывшей комнате m me Schoss. Раненый этот был князь Андрей Болконский.

Наступил последний день Москвы. Была ясная веселая осенняя погода. Было воскресенье. Как и в обыкновенные воскресенья, благовестили к обедне во всех церквах. Никто, казалось, еще не мог понять того, что ожидает Москву.
Только два указателя состояния общества выражали то положение, в котором была Москва: чернь, то есть сословие бедных людей, и цены на предметы. Фабричные, дворовые и мужики огромной толпой, в которую замешались чиновники, семинаристы, дворяне, в этот день рано утром вышли на Три Горы. Постояв там и не дождавшись Растопчина и убедившись в том, что Москва будет сдана, эта толпа рассыпалась по Москве, по питейным домам и трактирам. Цены в этот день тоже указывали на положение дел. Цены на оружие, на золото, на телеги и лошадей всё шли возвышаясь, а цены на бумажки и на городские вещи всё шли уменьшаясь, так что в середине дня были случаи, что дорогие товары, как сукна, извозчики вывозили исполу, а за мужицкую лошадь платили пятьсот рублей; мебель же, зеркала, бронзы отдавали даром.
В степенном и старом доме Ростовых распадение прежних условий жизни выразилось очень слабо. В отношении людей было только то, что в ночь пропало три человека из огромной дворни; но ничего не было украдено; и в отношении цен вещей оказалось то, что тридцать подвод, пришедшие из деревень, были огромное богатство, которому многие завидовали и за которые Ростовым предлагали огромные деньги. Мало того, что за эти подводы предлагали огромные деньги, с вечера и рано утром 1 го сентября на двор к Ростовым приходили посланные денщики и слуги от раненых офицеров и притаскивались сами раненые, помещенные у Ростовых и в соседних домах, и умоляли людей Ростовых похлопотать о том, чтоб им дали подводы для выезда из Москвы. Дворецкий, к которому обращались с такими просьбами, хотя и жалел раненых, решительно отказывал, говоря, что он даже и не посмеет доложить о том графу. Как ни жалки были остающиеся раненые, было очевидно, что, отдай одну подводу, не было причины не отдать другую, все – отдать и свои экипажи. Тридцать подвод не могли спасти всех раненых, а в общем бедствии нельзя было не думать о себе и своей семье. Так думал дворецкий за своего барина.
Проснувшись утром 1 го числа, граф Илья Андреич потихоньку вышел из спальни, чтобы не разбудить к утру только заснувшую графиню, и в своем лиловом шелковом халате вышел на крыльцо. Подводы, увязанные, стояли на дворе. У крыльца стояли экипажи. Дворецкий стоял у подъезда, разговаривая с стариком денщиком и молодым, бледным офицером с подвязанной рукой. Дворецкий, увидав графа, сделал офицеру и денщику значительный и строгий знак, чтобы они удалились.
– Ну, что, все готово, Васильич? – сказал граф, потирая свою лысину и добродушно глядя на офицера и денщика и кивая им головой. (Граф любил новые лица.)
– Хоть сейчас запрягать, ваше сиятельство.
– Ну и славно, вот графиня проснется, и с богом! Вы что, господа? – обратился он к офицеру. – У меня в доме? – Офицер придвинулся ближе. Бледное лицо его вспыхнуло вдруг яркой краской.
– Граф, сделайте одолжение, позвольте мне… ради бога… где нибудь приютиться на ваших подводах. Здесь у меня ничего с собой нет… Мне на возу… все равно… – Еще не успел договорить офицер, как денщик с той же просьбой для своего господина обратился к графу.
– А! да, да, да, – поспешно заговорил граф. – Я очень, очень рад. Васильич, ты распорядись, ну там очистить одну или две телеги, ну там… что же… что нужно… – какими то неопределенными выражениями, что то приказывая, сказал граф. Но в то же мгновение горячее выражение благодарности офицера уже закрепило то, что он приказывал. Граф оглянулся вокруг себя: на дворе, в воротах, в окне флигеля виднелись раненые и денщики. Все они смотрели на графа и подвигались к крыльцу.
– Пожалуйте, ваше сиятельство, в галерею: там как прикажете насчет картин? – сказал дворецкий. И граф вместе с ним вошел в дом, повторяя свое приказание о том, чтобы не отказывать раненым, которые просятся ехать.
– Ну, что же, можно сложить что нибудь, – прибавил он тихим, таинственным голосом, как будто боясь, чтобы кто нибудь его не услышал.
В девять часов проснулась графиня, и Матрена Тимофеевна, бывшая ее горничная, исполнявшая в отношении графини должность шефа жандармов, пришла доложить своей бывшей барышне, что Марья Карловна очень обижены и что барышниным летним платьям нельзя остаться здесь. На расспросы графини, почему m me Schoss обижена, открылось, что ее сундук сняли с подводы и все подводы развязывают – добро снимают и набирают с собой раненых, которых граф, по своей простоте, приказал забирать с собой. Графиня велела попросить к себе мужа.
– Что это, мой друг, я слышу, вещи опять снимают?
– Знаешь, ma chere, я вот что хотел тебе сказать… ma chere графинюшка… ко мне приходил офицер, просят, чтобы дать несколько подвод под раненых. Ведь это все дело наживное; а каково им оставаться, подумай!.. Право, у нас на дворе, сами мы их зазвали, офицеры тут есть. Знаешь, думаю, право, ma chere, вот, ma chere… пускай их свезут… куда же торопиться?.. – Граф робко сказал это, как он всегда говорил, когда дело шло о деньгах. Графиня же привыкла уж к этому тону, всегда предшествовавшему делу, разорявшему детей, как какая нибудь постройка галереи, оранжереи, устройство домашнего театра или музыки, – и привыкла, и долгом считала всегда противоборствовать тому, что выражалось этим робким тоном.
Она приняла свой покорно плачевный вид и сказала мужу:
– Послушай, граф, ты довел до того, что за дом ничего не дают, а теперь и все наше – детское состояние погубить хочешь. Ведь ты сам говоришь, что в доме на сто тысяч добра. Я, мой друг, не согласна и не согласна. Воля твоя! На раненых есть правительство. Они знают. Посмотри: вон напротив, у Лопухиных, еще третьего дня все дочиста вывезли. Вот как люди делают. Одни мы дураки. Пожалей хоть не меня, так детей.
Граф замахал руками и, ничего не сказав, вышел из комнаты.
– Папа! об чем вы это? – сказала ему Наташа, вслед за ним вошедшая в комнату матери.
– Ни о чем! Тебе что за дело! – сердито проговорил граф.
– Нет, я слышала, – сказала Наташа. – Отчего ж маменька не хочет?
– Тебе что за дело? – крикнул граф. Наташа отошла к окну и задумалась.
– Папенька, Берг к нам приехал, – сказала она, глядя в окно.

Берг, зять Ростовых, был уже полковник с Владимиром и Анной на шее и занимал все то же покойное и приятное место помощника начальника штаба, помощника первого отделения начальника штаба второго корпуса.
Он 1 сентября приехал из армии в Москву.
Ему в Москве нечего было делать; но он заметил, что все из армии просились в Москву и что то там делали. Он счел тоже нужным отпроситься для домашних и семейных дел.
Берг, в своих аккуратных дрожечках на паре сытых саврасеньких, точно таких, какие были у одного князя, подъехал к дому своего тестя. Он внимательно посмотрел во двор на подводы и, входя на крыльцо, вынул чистый носовой платок и завязал узел.
Из передней Берг плывущим, нетерпеливым шагом вбежал в гостиную и обнял графа, поцеловал ручки у Наташи и Сони и поспешно спросил о здоровье мамаши.
– Какое теперь здоровье? Ну, рассказывай же, – сказал граф, – что войска? Отступают или будет еще сраженье?
– Один предвечный бог, папаша, – сказал Берг, – может решить судьбы отечества. Армия горит духом геройства, и теперь вожди, так сказать, собрались на совещание. Что будет, неизвестно. Но я вам скажу вообще, папаша, такого геройского духа, истинно древнего мужества российских войск, которое они – оно, – поправился он, – показали или выказали в этой битве 26 числа, нет никаких слов достойных, чтоб их описать… Я вам скажу, папаша (он ударил себя в грудь так же, как ударял себя один рассказывавший при нем генерал, хотя несколько поздно, потому что ударить себя в грудь надо было при слове «российское войско»), – я вам скажу откровенно, что мы, начальники, не только не должны были подгонять солдат или что нибудь такое, но мы насилу могли удерживать эти, эти… да, мужественные и древние подвиги, – сказал он скороговоркой. – Генерал Барклай до Толли жертвовал жизнью своей везде впереди войска, я вам скажу. Наш же корпус был поставлен на скате горы. Можете себе представить! – И тут Берг рассказал все, что он запомнил, из разных слышанных за это время рассказов. Наташа, не спуская взгляда, который смущал Берга, как будто отыскивая на его лице решения какого то вопроса, смотрела на него.
– Такое геройство вообще, каковое выказали российские воины, нельзя представить и достойно восхвалить! – сказал Берг, оглядываясь на Наташу и как бы желая ее задобрить, улыбаясь ей в ответ на ее упорный взгляд… – «Россия не в Москве, она в сердцах се сынов!» Так, папаша? – сказал Берг.
В это время из диванной, с усталым и недовольным видом, вышла графиня. Берг поспешно вскочил, поцеловал ручку графини, осведомился о ее здоровье и, выражая свое сочувствие покачиваньем головы, остановился подле нее.
– Да, мамаша, я вам истинно скажу, тяжелые и грустные времена для всякого русского. Но зачем же так беспокоиться? Вы еще успеете уехать…
– Я не понимаю, что делают люди, – сказала графиня, обращаясь к мужу, – мне сейчас сказали, что еще ничего не готово. Ведь надо же кому нибудь распорядиться. Вот и пожалеешь о Митеньке. Это конца не будет?
Граф хотел что то сказать, но, видимо, воздержался. Он встал с своего стула и пошел к двери.
Берг в это время, как бы для того, чтобы высморкаться, достал платок и, глядя на узелок, задумался, грустно и значительно покачивая головой.
– А у меня к вам, папаша, большая просьба, – сказал он.
– Гм?.. – сказал граф, останавливаясь.
– Еду я сейчас мимо Юсупова дома, – смеясь, сказал Берг. – Управляющий мне знакомый, выбежал и просит, не купите ли что нибудь. Я зашел, знаете, из любопытства, и там одна шифоньерочка и туалет. Вы знаете, как Верушка этого желала и как мы спорили об этом. (Берг невольно перешел в тон радости о своей благоустроенности, когда он начал говорить про шифоньерку и туалет.) И такая прелесть! выдвигается и с аглицким секретом, знаете? А Верочке давно хотелось. Так мне хочется ей сюрприз сделать. Я видел у вас так много этих мужиков на дворе. Дайте мне одного, пожалуйста, я ему хорошенько заплачу и…
Граф сморщился и заперхал.
– У графини просите, а я не распоряжаюсь.
– Ежели затруднительно, пожалуйста, не надо, – сказал Берг. – Мне для Верушки только очень бы хотелось.
– Ах, убирайтесь вы все к черту, к черту, к черту и к черту!.. – закричал старый граф. – Голова кругом идет. – И он вышел из комнаты.
Графиня заплакала.
– Да, да, маменька, очень тяжелые времена! – сказал Берг.
Наташа вышла вместе с отцом и, как будто с трудом соображая что то, сначала пошла за ним, а потом побежала вниз.
На крыльце стоял Петя, занимавшийся вооружением людей, которые ехали из Москвы. На дворе все так же стояли заложенные подводы. Две из них были развязаны, и на одну из них влезал офицер, поддерживаемый денщиком.
– Ты знаешь за что? – спросил Петя Наташу (Наташа поняла, что Петя разумел: за что поссорились отец с матерью). Она не отвечала.
– За то, что папенька хотел отдать все подводы под ранепых, – сказал Петя. – Мне Васильич сказал. По моему…
– По моему, – вдруг закричала почти Наташа, обращая свое озлобленное лицо к Пете, – по моему, это такая гадость, такая мерзость, такая… я не знаю! Разве мы немцы какие нибудь?.. – Горло ее задрожало от судорожных рыданий, и она, боясь ослабеть и выпустить даром заряд своей злобы, повернулась и стремительно бросилась по лестнице. Берг сидел подле графини и родственно почтительно утешал ее. Граф с трубкой в руках ходил по комнате, когда Наташа, с изуродованным злобой лицом, как буря ворвалась в комнату и быстрыми шагами подошла к матери.
– Это гадость! Это мерзость! – закричала она. – Это не может быть, чтобы вы приказали.
Берг и графиня недоумевающе и испуганно смотрели на нее. Граф остановился у окна, прислушиваясь.
– Маменька, это нельзя; посмотрите, что на дворе! – закричала она. – Они остаются!..
– Что с тобой? Кто они? Что тебе надо?

Жидкий водород - одно из агрегатных состояний водорода. Выделяют еще газообразное и твердое состояние этого элемента. И если газообразная форма хорошо знакома многим, то остальные два крайних состояния вызывают вопросы.

История

Жидкий водород был получен только в тридцатых годах прошлого века, но до этого химия прошла долгий путь по освоению такого способа хранения газов и применения.

Искусственное охлаждение экспериментально начали применять в середине восемнадцатого века в Англии. В 1984 году получили сжиженный диоксид серы и аммиак. На основе этих исследований через двадцать лет был разработан первый холодильник, а еще через тридцать лет Перкинс оформил официальный патент на свое изобретение. В 1851 году по другую сторону Атлантического океана Джон Гори заявил о правах на создание кондиционера.

До водорода дело дошло только в 1885 году, когда поляк Вроблевский анонсировал в своей статье тот факт, что этого элемента равна 23 Кельвинам, пик температуры - 33 Кельвинам, а равно 13 атмосферам. После этого заявления создать жидкий водород попытался Джеймс Дьюар в конце 19-го века, но стабильной субстанции у него не получилось.

Физические свойства

Данное характеризуется очень низкой плотностью вещества - сотые доли граммов на кубический сантиметр. Это дает возможность использовать относительно маленькие емкости, чтобы хранить жидкий водород. Температура кипения равна всего 20 Кельвинам (-252 по Цельсию), а замерзает эта субстанция уже при 14 Кельвинах.

Жидкость не имеет запаха, цвета и вкуса. Смешивание ее с кислородом может привести к взрыву в половине случаев. При достижении температуры кипения водород переходит в газообразное состояние, и его объем увеличивается в 850 раз.

После сжижения водород помещается в изолированные контейнеры, в которых поддерживается низкое давление и температура в промежутке от 15 до 19 Кельвинов.

Распространенность водорода

Жидкий водород производится искусственно и в естественной среде не встречается. Если не брать в расчет агрегатные состояния, то водород - самый распространенный элемент не только на планете Земля, но и во Вселенной. Из него состоят звезды (в том числе и наше Солнце), им заполнено пространство между ними. Водород принимает участие в реакциях термоядерного синтеза, а также может образовывать облака.

В земной коре этот элемент занимает всего лишь около процента от всего количества вещества. Его роль в нашей экосистеме можно оценить по тому факту, что число атомов водорода по количеству уступает только кислороду. На нашей планете практически все запасы Н 2 находятся в связанном состоянии. Водород - составная часть всех живых существ.

Использование

Жидкий водород (температура по Цельсию -252 градуса) используется в виде формы для хранения бензина и других производных нефтепереработки. Кроме того, в данный момент создаются концепции транспорта, который смог бы использовать сжиженный водород как топливо вместо природного газа. Это позволило бы сократить затраты на добычу ценных ископаемых и снизить выбросы в атмосферу. Но пока оптимальной конструкции двигателя так и не было найдено.

Жидкий водород активно используется физиками как охладитель в их экспериментах с нейтронами. Так как масса элементарной частицы и ядра водорода практически равны, обмен энергией между ними является весьма эффективным.

Преимущества и препятствия

Жидкий водород дает возможность замедлить нагревание атмосферы и уменьшить количество парниковых газов, если применять его в качестве топлива для автомобилей. При его взаимодействии с воздухом (после прохождения через двигатель внутреннего сгорания) будет образовываться вода и незначительно количество оксида азота.

Однако у этой идеи есть и свои трудности, например, способ хранения и транспортировки газа, а также повышенная опасность воспламенения или даже взрыва. Даже при условии соблюдения всех мер предосторожности предотвратить испарение водорода не удается.

Ракетное топливо

Жидкий водород (температура хранения до 20 Кельвинов) является одним из компонентов У него есть несколько функций:

  1. Охлаждение элементов двигателя и защита сопла от перегрева.
  2. Обеспечение тяги после смешивания с кислородом и нагревания.

Современные работают на комбинации водород-кислород. Это помогает достичь нужной скорости для преодоления притяжения земли и при этом сохранить все части летательных аппаратов, не подвергая их действию чрезмерных температур.

На данный момент существует только одна ракета, которая полностью использует водород в качестве топлива. В большинстве случаев жидкий водород необходим для отделения верхних ступеней ракет или в тех аппаратах, которые большую часть работы проведут в вакууме. От исследователей поступали предложения использовать наполовину замороженную форму этого элемента, чтобы повысить его плотность.

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

Фотографии твердого водорода при давлении 2,05 миллиона атмосфер (a, образец прозрачный и свет проходит сквозь него), 4,15 миллиона атмосфер (b, образец непрозрачный, не отражает свет), 4,95 миллиона атмосфер (с, образец непрозрачный, отражает свет).

Физики из Гарвардского университета впервые синтезировали металлический водород. Чтобы добиться этого, ученые сжали водород в алмазной наковальне под давлением почти в 5 миллионов атмосфер и охладили до 5,5 кельвина. Теоретики предсказывают , что материал может оказаться комнатнотемпературным сверхпроводником, а также обладать рядом других необычных свойств. Независимые эксперты подвергают открытие сомнению. Исследование опубликовано в журнале Science (препринт работы), его обзор приводит журнал Nature .

Водород - самый распространенный элемент во Вселенной. В обычных условиях он существует в виде бесцветного газа, каждая частица которого состоит из двух атомов водорода. Если сжать обычный водород давлениями в тысячи атмосфер, то можно получить его сначала в жидком, а потом и в твердом виде - прозрачного, не проводящего электричество материала. В 1935 году физики Вигнер и Хантингтон теоретически предсказали , что дополнительно увеличив давление можно заставить водород перейти в металлическое состояние.

Этот материал привлек к себе внимание экспериментаторов благодаря своим необычным свойствам - с одной стороны, теоретики предсказывают ему сверхпроводимость при температурах близких к комнатной. С другой стороны, в виде металлической фазы водород запасает огромную энергию и его удобно хранить - это свойство важно для ракетостроения. Попытки синтеза материала начались во второй половине XX века, но до сих пор нельзя с уверенностью сказать, что он был получен.


Фазовая диаграмма водорода. Твердый металлический водород внизу справа.

Ranga P. Dias, Isaac F. Silvera / Science, 2017

Одна из важных проблем синтеза металлического водорода - высокие давления, необходимые для фазового перехода. Вигнер и Хантингтон предсказали, что молекулярный двухатомный водород должен превращаться в металлический одноатомный водород при давлениях около 250 тысяч атмосфер и низких температурах. Это примерно в 250 раз больше, чем давление на дне Марианской впадины. Однако эксперименты показали, что эта оценка не соответствует действительности. Современные исследования предсказывают величину давления фазового перехода в 4-5 миллионов атмосфер - это эквивалентно давлению, которое оказывает объект с массой слона, стоящий на игле с площадью поверхности острия меньше квадратного миллиметра.

Авторы новой работы утверждают, что смогли синтезировать твердый металлический водород с помощью алмазной наковальни, создававшей давление в 4,95 миллиона атмосфер в охлаждаемой жидким гелием ячейке. Этот прибор представляет собой пару высококачественных алмазов, с плоскими отшлифованными гранями наковальни. Их сжимают, вкручивая длинные стальные винты.


Схема эксперимента

R. Dias and I.F. Silvera

Ранее гарвардский коллектив ученых уже предпринимал попытки синтеза металлического водорода - в ходе экспериментов физики выяснили несколько проблем, осложняющих достижение больших давлений. В первую очередь водород способен проникать в алмаз и делать его более хрупким. С ростом давлений это приводит к разрушению «наковальни». Во-вторых, лазерное излучение, используемое для мониторинга состояния ячейки, также может привести к разрушению алмаза (например, инфракрасное излучение способно превратить алмаз в графит). Чтобы избежать этих сложностей авторы модифицировали традиционный эксперимент.

Физики покрыли алмазные поверхности аморфным оксидом алюминия (толщиной 50 нанометров), для предотвращения диффузии водорода. Кроме того, использование лазерного излучения в эксперименте было минимизировано - оценка давлений делалась на основе количества оборотов винта.

Ученые следили за изменениями в образце с помощью микроскопа. При двух миллионах атмосфер водород был прозрачным твердым веществом. При 4,15 миллиона атмосфер образец потемнел и перестал пропускать свет. При давлении 4,95 миллиона атмосфер авторы обнаружили, что образец стал красноватым и начал хорошо отражать свет. Из спектральных данных физики определили, что в твердом водороде возникла большая концентрация свободных носителей заряда (7,7±1,1×10 23 частиц на кубический сантиметр) - в десятки раз больше чем у лития, натрия или калия (щелочных металлов). По словам ученых, это подтверждает металлическую природу материала.

Независимые эксперты, также участвующие в «гонке» синтеза металлического водорода, сомневаются в надежности работы. Во-первых, эксперимент по синтезу металлического водорода был поставлен лишь один раз и не воспроизводился. Во-вторых, свою роль могло сыграть покрытие из оксида алюминия - нет уверенности, что материал не восстановился до металлического алюминия. Евгений Грегорянц, год назад фазу-предшественник металлического водорода, также отмечает, что детальные измерения состояния ячейки были сделаны лишь при пиковых значениях давлений. На их основании нельзя надежно судить о достигнутом давлении, как и на основе количества оборотов винта.

Убедить экспертов может повторение эксперимента и дополнительные тесты. По словам Айзека Сильвера, соавтора работы, решение опубликовать статью с ограниченным количеством подтверждающих тестов было связано с тем, что образец может разрушиться при дальнейшей работе с ним. Сейчас, когда исследование опубликовано, физики планируют провести анализ рамановского рассеяния на металлическом водороде и другие тесты.

Это не первое заявление ученых о синтезе металлического водорода. В июле 2016 года группа исследователей под руководством Айзека Сильвера о синтезе жидкого металлического водорода (и также подверглась критике). В 2011 году о синтезе материала заявляли Михаил Еремец и Иван Троян из Химического института общества Макса Планка, однако, по словам химиков, надежных подтверждений до сих пор получено не было. Считается, что встретить жидкий металлический водород можно, например, в недрах Юпитера.

Владимир Королёв

Жидкий

Водород (лат. Hydrogenium ; обозначается символом H ) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

Простое вещество водород — H 2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

Распространённость

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

H 2 O + C ? H 2 + CO

3.Из природного газа.

Конверсия с водяным паром:

CH 4 + H 2 O ? CO + 3H 2 (1000 °C)

Каталитическое окисление кислородом:

2CH 4 + O 2 ? 2CO + 4H 2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e − → H 2 + 2H 2 O

Физические свойства

Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o -H 2 и p -H 2 при заданной температуре называется равновесный водород e -H 2 .

Разделить модификации водорода можноадсорбциейна активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Водород — самый лёгкийгаз, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н 2 . При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×10 6 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni,Pt,Pdи др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим всеребре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см 3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н 2 , 0,21 % орто-Н 2 .

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см 3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a =3,75 c =6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10 −22 — 10 −23 с.

Природный водород состоит из молекул H 2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D 2 ещё меньше. Отношение концентраций HD и D 2 , примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K

Температура
кипения,
K

Тройная
точка,
K / kPa

Критическая
точка,
K / kPa

Плотность
жидкий / газ,
кг/м³

Дейтерий и тритий также имеют орто- и пара- модификации: p -D 2 , o -D 2 , p -T 2 , o -T 2 . Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства

Доля диссоциировавших молекул водорода

Молекулы водорода Н 2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н 2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н 2 = СаН 2

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О 2 + 2Н 2 = 2Н 2 О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н 2 = Cu + Н 2 O

Записанное уравнение отражает восстановительные свойства водорода.

N 2 + 3H 2 → 2NH 3

С галогенами образует галогеноводороды:

F 2 + H 2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl 2 + H 2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na + H 2 → 2NaH

Ca + H 2 → CaH 2

Mg + H 2 → MgH 2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O

Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O

WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования . Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

  • При производстве аммиака, метанола, мыла и пластмасс
  • При производстве маргарина из жидких растительных масел
  • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Пищевая промышленность

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

«Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Спиновые изомеры водорода

Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW H2R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

Препятствия

Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».