Зависит ли внутренняя энергия тела от его. Внутренняя энергия. — Гипермаркет знаний. Внутреннюю энергию можно изменить двумя способами

Вступление

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие . С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.

Термодинамика и статистическая механика

Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.

Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.

С точки зрения молекулярно-кинетической теории внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).

Вычислить внутреннюю энергию тела (или ее изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.

Внутренняя энергия идеального одноатомного газа

Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.

Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой m нужно умножить среднюю кинетическую энергию одного атома на число атомов. Учитывая, что kN A =R , получим формулу для внутренней энергии идеального газа:



Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре .

Она не зависит от объема и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа равно


, т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и T другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но и вращаются . Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.

Зависимость внутренней энергии от макроскопических параметров

Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю . Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами . Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.

Значения макроскопических параметров (температуры T , объема V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.
В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.

Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.

Внутренняя энергия человека

На сегодняшнем уроке мы с вами расширили свои знания о внутренней энергии. Теперь давайте закрепим материал и вспомним определение, что же называется внутренней энергией. Внутренней энергией называют такую энергию тела, с помощью которой появляется возможность совершать механическую работу, не вызывая спада механической энергии этого тела.

А из изученного материала мы с вами уже знаем, что внутренняя энергия может зависеть от ряда причин, которыми могут быть: массы и температуры тела, состояния вещества, положения этого тела относительно других тел и т.д.



Внутренняя энергия присутствует в различных телах: как больших, так и маленьких; как в горячих, так и холодных, а так же в твердых, жидких и газообразных. Можно с уверенностью сказать, что все, что нас окружает, вся живая и неживая материя является энергией. Ведь, в переводе с древнегреческого языка, термин «энергия» обозначает силу, действие и мощь. Поэтому, все, что мы видим, слышим, чувствуем и можем потрогать, можно сказать, что все это является энергией вселенной.

А сейчас давайте с вами поговорим о таком важном свойстве, как внутренняя энергия человека.



Можно образно выразиться, что так же как происходит круговорот воды в природе, точно также существует и круговорот энергии. А если с этой точки зрения рассматривать человека, то его внутренняя энергия зависит от многого. Ведь каждый человек постоянно расходует свою внутреннюю энергию и поэтому появляется необходимость в ее пополнении.

Если рассматривать человека с точки зрения физики, то человек является живой электростанцией с множеством генераторов в каждой клетке его тела, которые беспрерывно занимаются выработкой энергии в организме в виде статического электричества.

Но очень важно, чтобы с приходом энергии и ее расходом существовал баланс. А если такой баланс отсутствует, то происходит нарушение энергетического обмена, и в итоге мы получаем недостаток или переизбыток энергии, и это приводит к отрицательным последствиям. Поэтому вопрос энергии является очень важным. Ведь от нашей внутренней энергии может зависеть не только наш успех и благополучие, но и самое ценное – это наше здоровье.

Поэтому, человек, который обладает высоким уровнем внутренней энергии, имеет более крепкое здоровье, и больше возможностей для полноценной жизни.

А вот пониженный энергетический уровень может стать причиной многих сбоев в организме и привести к хроническим заболеваниям.

Конечно же, и лишняя внутренняя энергия не сулит ничего хорошего и может быть причиной сбоев в организме и привести к нервным срывам и даже инсультам.

Лишняя внутренняя энергия человека должна выводиться с организма и пополняться новой энергией.

А теперь давайте рассмотрим, какие могут быть причины неконтролируемого расхода энергии:

Во-первых, наша внутренняя энергия может быть излишне расходована при неправильном питании и некачественной пище;
Во-вторых, на нашу внутреннюю энергию оказывает влияние «зашлакованность» организма и плохая работа кишечника;
В-третьих, причиной лишнего расхода внутренней энергии являются умственные перегрузки, нервное напряжение и неконтролируемые эмоции;
В-четвертых, такой причиной могут быть и излишняя активность человека;
В-пятых, к этому перечню относятся и вредные привычки, и плохая экология, и недостаточная физическая нагрузка.



Чтобы устранить необоснованный расход энергии, необходимо: полноценно питаться, вести активный образ жизни, запасаться положительными эмоциями, иметь полноценный сон и отдых.

А знаете ли вы, что ваш организм способен подавать сигналы, когда он скопил вредную энергию? Замечали ли вы, что бывали моменты, когда вы здоровались с другим человеком, или дотрагивались до металлических предметов, то чувствовали удар током. Вот это и есть тот сигнал тревоги, когда необходимо избавиться от такой энергии.

Вопросы

1. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту.
2. От каких физических величин зависит внутренняя энергия тела?
3. Чему равна внутренняя энергия идеального одноатомного газа?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

В этом параграфе мы будем говорить об изменениях внутренней энергии тел, связанных с изменениями их температуры. Опыты Джоуля (§ 203) показывают, что при нагревании 1 кг воды на 1К внутренняя энергия этой воды увеличивается на 4,18 кДж. Для нагревания 10 кг воды придется затратить в 10 раз больше энергии и. т. д. Таким образом, увеличение внутренней энергии при нагревании воды прямо пропорционально ее массе. То же относится и к любому другому однородному телу. Так, чтобы нагреть большой утюг до определенной температуры, нужно дольше нагревать его, чем маленький. Зато большой утюг будет дольше остывать и при остывании отдаст окружающим телам больше теплоты. Например, большим утюгом, нагретым до определенной температуры, можно выгладить больше белья, чем маленьким утюгом, нагретым до той же температуры. Таким образом, при одинаковом изменении температуры внутренняя энергия большого утюга изменяется больше.

Итак, при определенном изменении температуры изменение внутренней энергии тела пропорционально его массе. Отсюда видно, что понятие массы тела, которое мы ввели при рассмотрении механических явлений, оказывается полезным и при рассмотрении тепловых явлений.

Наблюдения показывают также, что чем выше температура, до которой нагрето данное тело, тем больше времени займет процесс остывания; следовательно, телом будет отдано больше теплоты и его внутренняя энергия изменится больше. Таким образом, изменение внутренней анергии тела тем больше, чем больше изменение его температуры.

Внутренняя энергия тела зависит не только от массы и температуры, но также и от вещества этого тела. Возьмем два тела одинаковой массы, например два шара - один свинцовый, другой алюминиевый, - и нагреем их до одной и той же температуры, например до . Если теперь погрузить шары в одинаковые сосуды с водой, то увидим, что алюминиевый шар нагреет воду до большей температуры, чем свинцовый. Значит, при охлаждении данная масса алюминия отдаст больше теплоты, чем такая же масса свинца. Обратно, для нагревания на одно и то же число кельвин алюминию нужно сообщить больше теплоты, чем такой же массе свинца.

Таким образом, изменение внутренней энергии данной массы алюминия больше, чем изменение внутренней энергии такой же массы свинца при том же изменении температуры.

Так как внутренняя энергия сильно зависит от температуры, то иногда эту энергию называют тепловой. Однако внутренняя энергия тел зависит не только от температуры. Она меняется при сжатии жидкостей, при деформации твердых тел (§287), при плавлении вещества (§219) и его испарении (§ 297). Только для веществ, находящихся в газообразном состоянии, внутренняя энергия практически изменяется только при изменении температуры. Поэтому нецелесообразно заменять общепринятый в науке термин «внутренняя энергия» термином «тепловая энергия». Кроме того, применение последнего термина может привести к смешению с понятием количества теплоты, полученного телом (§ 204).

Внутренняя энергия - это энергия движения и взаимодействия молекул .

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

При остановке тела механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию тела

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов.

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Если рассматривать кинетическую и потенциальную энергию одной молекулы, то это очень маленькая величина, ведь масса молекулы мала. Поскольку в теле содержится множество молекул, то внутренняя энергия тела, равная сумме энергий всех молекул, будет велика.

Способы изменения внутренней энергии

При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается.

Опыт: если нагреть бутылку с резиновой пробкой, то пробка через некоторое время вылетит.

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул.

Внутреннюю энергию можно изменить двумя способами:

1) совершая механическую работу. Внутренняя энергия увеличивается, если над телом совершают работу, а уменьшается, если тело совершает работу.

2) путем теплопередачи (теплопроводностью, конвекцией, излучением). Если тело отдаёт тепло, то внутренняя энергия уменьшается, а если принимает тепло, то она увеличивается.

Виды теплопередачи. Опыты, иллюстрирующие виды теплопередачи. Теплопередача в природе, технике, механике.

Теплообмен (теплопередача) - это процесс изменения внутренней энергии, происходящий без совершения работы.

1)

Теплопроводность - вид теплопередачи, при котором энергия передается от одного тела к другому при соприкосновении или от одной его части к другой. Разные вещества имеют разную теплопроводность. Теплопроводность у металлов большая, у жидкостей - меньше, у газов - низкая. При теплопроводности не происходит переноса вещества.

2) Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости. Существует два вида конвекции: естественная и вынужденная. В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью. Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.


3) Излучение - вид теплопередачи, при котором энергия переносится электромагнитными волнами. Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Это используется на практике.

* При теплообмене кол-во отданной теплоты равно по модулю кол-ву полученной теплоты, или их сумма равно нулю. Это называется уровнем теплового баланса.