Закон сохранения полной кинетической энергии. Кинетическая и потенциальная энергия. Закон сохранения энергии. Столкновение тел. Упругий и неупругий удары

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Один из наиболее важных законов, согласно которому физическая величина - энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

А кинетическая энергия будет равная в тот момент ( - скорость тела в точке 2):

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна (где v3 - скорость тела в момент падения на Землю). Так как , то кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали.

Для потенциального силового поля можно ввести понятие о потенциальной энергии как о величине, характеризующей «запас работы», которым обладает материальная точка в данном пункте силового поля. Чтобы сравнивать между собой эти «запасы работы», нужно условиться о выборе нулевой точки О, в которой будем условно считать «запас работы» равным нулю (выбор нулевой точки, как и всякого начала отсчета, производится произвольно). Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

Из определения следует, что потенциальная энергия П зависит от координат х, у, z точки М, т. е. что

т. е. потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

Отсюда видно, что при рассмотрении всех свойств потенциального силового поля вместо силовой функции можно пользоваться понятием потенциальной энергии. В частности, работу потенциальной силы вместо равенства (57) можно вычислять по формуле

Следовательно, работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном ее положениях.

Выражения потенциальной энергии для известных нам потенциальных силовых полей можно найти из равенств (59) - (59”), учитывая, что . Таким образом, будет:

1) для поля силы тяжести (ось z вертикально вверх)

2) для поля силы упругости (линейного)

3) для поля силы тяготения

Потенциальная энергия системы определяется так же, как и для одной точки, а именно: потенциальная энергия П механической системы в данном ее положении равна работе, которую произведут силы поля при перемещении системы из данного положения в нулевое,

При наличии нескольких полей (например, полей сил тяжести и сил упругости) для каждого поля можно брать свое нулевое положение.

Зависимость между потенциальной энергией и силовой функцией будет такой же, как и для точки, т. е.

Закон сохранения механической энергии. Допустим, что все действующие на систему внешние и внутренние силы потенциальны. Тогда

Подставляя это выражение работы в уравнение (50), получим для любого положения системы: или

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии.

Величина называется полной механической энергией системы, а сама механическая система, для которой выполняется закон консервативной системой.

Пример. Рассмотрим маятник (рис. 320), отклоненный от вертикали на угол и отпущенный без начальной скорости. Тогда в начальном его положении , где Р - вес маятника; z - координата его центра тяжести. Следовательно, если пренебречь всеми сопротивлениями, то в любом другом положении будет или

Таким образом, выше положения центр тяжести маятника подняться не может. При опускании маятника его потенциальная энергия убывает, а кинетическая растет, при подъеме, наоборот, потенциальная энергия растет, а кинетическая убывает.

Из составленного уравнения следует, что

Таким образом, угловая скорость маятника в любой момент времени зависит только от положения, занимаемого его центром тяжести, и в данном положении всегда принимает одно и то же значение. Такого рода зависимости имеют место только при движении под действием потенциальных сил.

Диссипативные системы. Рассмотрим механическую систему, на которую кроме потенциальных сил действуют неизбежные в земных условиях силы сопротивления (сопротивление среды, внешнее и внутреннее трение). Тогда из уравнения (50) получим: или

где - работа сил сопротивления. Так как силы сопротивления направлены против движения, то величина всегда отрицательная Следовательно, при движении рассматриваемой механической системы происходит убывание или, как говорят, диссипация (рассеивание) механической энергии. Силы, вызывающие эту диссипацию, называют диссипативными силами, а механическую систему, в которой происходит диссипация энергии, - диссипативной системой.

Например, у рассмотренного выше маятника (рис. 320) благодаря трению в оси и сопротивлению воздуха механическая энергия будет) со временем убывать, а его колебания будут затухать; это диссипативная система.

Полученные результаты не противоречат общему закону сохранения энергии, так как теряемая диссипативной системой механическая энергия переходит в другие формы энергии, например в теплоту.

Однако и при наличии сил сопротивления механическая система может не быть диссипативной, если теряемая энергия компенсируется притоком энергии извне. Например, отдельно взятый маятник, как мы видели, будет диссипативной системой. Но у маятника часов потеря энергии компенсируется периодическим притоком энергии извне за счет опускающихся гирь или заводной пружины, и маятник будет совершать незатухающие колебания, называемые автоколебаниями.

От вынужденных колебаний (см. § 96) автоколебания отличаются тем, что они происходят не под действием зависящей от времени возмущающей силы и что их амплитуда, частота и период определяются свойствами самой системы (у вынужденных колебаний амплитуда, частота и период зависят от возмущающей силы).


Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Сформулируйте определение работы? Какой буквой обозначается? В каких единицах измеряется? При каких условиях работа силы положительная? отрицательная? равна нулю? Какие силы называются потенциальными? Приведите примеры? Чему равна работа, совершаемая силой тяжести? Силой упругости? Дайте определение мощности. В каких единицах измеряется мощность? ЗАДАНИЯ ДЛЯ УСТНОГО ОПРОСА:

2 слайд

Описание слайда:

ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ ИЗУЧЕННОГО МАТЕРИАЛА: 1.Автомобиль массой 1000 кг, двигаясь равноускоренно из состояния покоя, за 10 с отъезжает на 200 м. Определите работу силы тяги, если коэффициент трения равен 0,05. Ответ:900 кДж 2. Трактор при вспашке преодолевает силу сопротивления 8 кН, развивая мощность 40 кВТ. С какой скоростью движется трактор? Ответ:5 м/с 3. Тело движется вдоль оси ОХ под действием силы зависимость проекции которой от координаты представлена на рисунке. Чему равна работа силы на пути 4м

3 слайд

Описание слайда:

Тема: Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Применение законов сохранения Цели занятия: Образовательная: ознакомится с понятием энергии; изучить два вида механической энергии – потенциальную и кинетическую; рассмотреть закон сохранения энергии; развить навыки решения задач. Развивающая: содействовать развитию речи, учить анализировать, сравнивать, способствовать развитию памяти, логического мышления. Воспитательная: помощь в самоактуализации и самореализации в учебном процессе и будущий профессиональной деятельности ПЛАН ЛЕКЦИИ 1.Механическая энергия 2.Кинетическая энергия 3.Потенциальная энергия 4.Закон сохранения энергии (видеодемонстрация) 5.Применение закона сохранения энергии

4 слайд

Описание слайда:

1.Механическая энергия Механическая работа (А) – это физическая величина, равная произведению модуля действующей силы на путь, пройденный телом под действием силы и на косинус угла между ними А=F·S·cosα Единица измерения работы в системе СИ – Дж (Джоуль) 1Дж=1Н·м.

5 слайд

Описание слайда:

Работа совершается в том случае, если тело движется под действием силы!!! Рассмотрим несколько примеров.

6 слайд

Описание слайда:

Про тела, которые могут совершить работу, говорят, что они обладают энергией. Энергия – это физическая величина, характеризующая способность тел совершать работу Единица измерения энергии в системе СИ – (Дж). Обозначается буквой (Е)

7 слайд

Описание слайда:

2. Кинетическая энергия Как энергия тела зависит от его скорости? Для этого рассмотрим движение тела некоторой массы m под действием постоянной силы (это может быть одна сила или равнодействующая нескольких сил), направленной вдоль перемещения.

8 слайд

Описание слайда:

Эта сила совершает работу А=F·S Cогласно второму закону Ньютона F=m·a Ускорение тела

9 слайд

Описание слайда:

Тогда, Полученная формула связывает работу результирующей силы, действующей на тело, с изменением величины Кинетическая энергия тела – это энергия движения. Кинетическая энергия тела – величина скалярная, которая зависит от модуля скорости тела, но не зависит от ее направления. Тогда, работа равнодействующей всех сил, действующих на тело, равна изменению кинетической энергии тела.

10 слайд

Описание слайда:

Это утверждение называют теоремой о кинетической энергии. Она справедлива независимо от того, какие силы действуют на тело: сила упругости, сила трения или сила тяжести. А работу, необходимую для разгона пули, совершает сила давления пороховых газов. Так, например, при метании копья, работу совершает мускульная сила человека.

11 слайд

Описание слайда:

Так, например, кинетическая энергия мальчика, покоящего относительно катера, равна нулю в системе отсчета, связанной с катером, и отлична от нуля, в системе отсчета, связанной с берегом.

12 слайд

Описание слайда:

3. Потенциальная энергия Вторым видом механической энергии, является потенциальная энергия тела. Термин «потенциальная энергия» был введен в 19 веке шотландским инженером и физиком Уильямом Джоном Ренкином. Ренкин, Уильям Джон Потенциальная энергия – это энергия системы, определяемая взаимным расположением тел (или частей тела друг относительно друга) и характером сил взаимодействия между ними

13 слайд

Описание слайда:

Величину, равную произведению массы тела, ускорения свободного падения и высоты тела над нулевым уровнем, называют потенциальной энергией тела в гравитационном поле Работа силы тяжести равна убыли потенциальной энергии тела в гравитационном поле Земли.

14 слайд

Описание слайда:

При изменении величины деформации сила упругости совершает работу, которая зависит от удлинения пружины в начальном и конечном положении В правой части равенства стоит изменение величины со знаком «минус». Поэтому, как и в случае силы тяжести, величина Таким образом, работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком.

15 слайд

Описание слайда:

4. Закон сохранения энергии Тела могут одновременно обладать и кинетической, и потенциальной энергией. Так вот, сумму кинетической и потенциальной энергии тела называют полной механической энергией тела или просто механической энергией. Можно ли изменить механическую энергию системы и, если можно, то как?

16 слайд

Описание слайда:

Рассмотрим замкнутую систему «кубик – наклонная плоскость – Земля» Согласно теореме о кинетической энергии, изменение кинетической энергии кубика равно работе всех сил, действующих на тело.

17 слайд

Описание слайда:

Тогда получаем, что увеличение кинетической энергии кубика происходит за счет убыли его потенциальной энергии. Следовательно, сумма изменений кинетической и потенциальной энергий тела равна нулю. А это значит, что полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения, остается постоянной. (Такой же результат можно получить и при действии силы упругости.) Это утверждение и есть закон сохранения энергии в механике.

18 слайд

Описание слайда:

19 слайд

Описание слайда:

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» - машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

20 слайд

Описание слайда:

ЗАДАЧИ ДЛЯ ЗАКРЕПЛЕНИЯ ПОЛУЧЕННЫХ ЗНАНИЙ Пуля массой 20 г выпущена под углом 600 к горизонту с начальной скоростью 600 м/с. Определите кинетическую энергию пули в момент наивысшего подъема. Пружина удерживает дверь. Для того чтобы приоткрыть дверь, растянув пружину на 3 см, нужно приложить силу равную 60 Н. Для того, чтобы открыть дверь, нужно растянуть пружину на 8 см. Какую работу необходимо совершить, чтобы открыть закрытую дверь? Камень брошен с поверхности Земли вертикально вверх со скоростью 10 м/с. На какой высоте кинетическая энергия камня уменьшится в 5 раз по сравнению с начальной кинетической энергией

21 слайд

Описание слайда:

По горизонтали. 1. Единица энергии в системе СИ. 4. Тело - классический пример для описания реактивного движения. 5. Физическая величина, равная работе, выполненной в единицу времени. 7. Свойство системы, необходимое для сохранения импульса или энергии. 9. Значение слово "импульс" в переводе с латинского языка. 12. Общее свойство ряда величин, суть которого - неизменность величины во времени в замкнутой системе. 13. Единица мощности в системе СИ. По вертикали. 2. Состояние системы, в котором потенциальная энергия равна нулю есть нулевой... . 3. Общее свойство для потенциальной и кинетической энергии, выражающее их зависимость от выбора тела отсчета. 4. Физическая величина, равная произведению проекции силы на направление перемещения и модуля перемещения. 6. Физическая величина, равная произведению массы тела на его скорость. 8. Величина, которая совпадает по направлению с импульсом тела. 9. Утверждение, суть которого в том, что изменение кинетической энергии равно работе равнодействующей всех сил, приложенных к телу. 10. Одна из величин, от которой зависит изменение импульса тела. 11. Величина, характеризующая способность тела (системы) выполнить работу.

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины: