Тайна близнецов. Загадка близнецов. Близнецы: интимные тайны знаков зодиака

Репродуктивная система женщины является одной из наисложнейших систем организма. Функционирование этой системы происходит за счёт слаженной работы целой группы органов и систем. Регуляция репродуктивной функции генетически запрограммирована и осушествляется на пяти уровнях.

Регуляция репродуктивной функции — кора головного мозга

Первый уровень регуляции представлен корой головного мозга и некоторыми мозговыми структурами. В ответ на воздействие факторов внешней и внутренней среды в головном мозге выделяются специфические вещества (нейротрансмиттеры и нейропептиды). Некоторые из этих веществ активируют, другие наоборот подавляют выделение нейрогормонов следующего уровня – гипоталамуса. Состояние нервной системы имеет огромное значение в развитии практически всех заболеваний. Поэтому, особенно во время планирования беременности, очень важно максимально избегать стрессовых ситуаций.

Регуляция репродуктивной функции — гипоталамус

Второй уровень регуляции представлен гипоталамусом. Гипоталамус является частью промежуточного мозга и состоит из скопления нервных клеток. Несмотря на маленькие размеры, гипоталамус отвечает за целый ряд жизненно важных функций. Кроме того определённая зона гипоталамуса состоит из клеток которые имеют свойства нейронов (генерируют нервные импульсы) и свойства эндокринных клеток (выделяют нейрогормоны). Нейрогормоны, по своему действию на гипофиз бывают двух видов: стимулируюшие гипофиз (либерины или релизинг-факторы) и подавляющие выработку гипофизарных гормонов (статины). Релизинг- гормоны имеющие непосредственное отношение к репродуктивной системе называют «гонадотропин-рилизинг-гормон» (ГнРГ). ГнРг вырабатываются в пульсирующем режиме. В зависимости от частоты и амплитуды выделения ГнРГ в преимущественно выделяется ЛГ (Лютеинизирующий гормон) или ФСГ (Фолликулостимулирующий гормон), что, в свою очередь, вызывает морфологические и секреторные изменения в яичниках.

Регуляция репродуктивной функции — гипофиз

Третий уровень регуляции представлен гипофизом. Гипофиз располагается в основании мозга, в костном углублении (турецкое седло) и является центральным органом эндокринной системы. Гипофиз выделяет ряд гормонов без которых невозможно нормальное функционирование репродуктивной системы и всего организма в целом. Но в плане значение имеют ФСГ и ЛГ. ФСГ стимулирует в яичнике рост фолликулов и созревание яйцеклетки, делает фолликул чувствительным к ЛГ. ЛГ обеспечивает овуляцию и стимулирует синтез прогестерона в жёлтом теле после овуляции.

Регуляция репродуктивной функции — яичники

Регуляция репродуктивной функции — обеспечение потомственности

Четвёртый уровень регуляции представлен яичниками. В яичниках происходит циклический рост и , т.е. осуществляется генеративная функция. Гормональная функция яичников заключается в синтезе половых гормонов.

Регуляция репродуктивной функции – органы-мишени

Пятый уровень регуляции – это чувствительные к колебаниям уровней половых гормонов органы-мишени: матка, маточные трубы, слизистая оболочка влагалища, а также молочные железы, волосяные фолликулы, кости, жировая ткань, ЦНС.

Уникальность функционирования репродуктивной системы заключается не только в её сложности, но и в том, что регуляция осуществляется как сверху вниз, так и снизу вверх. Между каждым уровнем репродуктивной системы существуют прямые и обратные, положительные и отрицательные связи, благодаря которым достигается слаженная работа всей системы в целом.

Менструальный цикл - одно из проявлений сложного биологического процесса в организме женщины, характеризующегося циклическими изменениями функции половой (репродуктивной) системы, сердечно-сосудистой, нервной, эндокринной и других систем организма.

Нормальный менструальный цикл включает 3 компонента: 1) циклические изменения в системе гипоталамус-гипофиз-яичники; 2) циклические изменения в гормонально-зависимых органах (матке, маточных трубах, влагалище, молочных железах); 3) циклические изменения (колебания функционального состояния) нервной, эндокринной, сердечно-сосудистой и других систем организма.

Изменения в организме женщины на протяжении менструального цикла носят двухфазный характер, что связано с ростом и созреванием фолликула, овуляцией и развитием желтого тела в яичниках. Наиболее выраженные циклические изменения происходят в слизистой оболочке матки (эндометрии). Биологическое значение изменений, происходящих на протяжении менструального цикла, состоит в осуществлении репродуктивной функции (созревание яйцеклетки, ее оплодотворение и имплантация зародыша в матке). Если оплодотворения яйцеклетки не происходит, функциональный слой эндометрия отторгается, из половых путей появляются кровянистые выделения, называемые менструацией. Появление менструаций свидетельствует об окончании циклических изменений в организме.

Длительность одного менструального цикла определяют от первого дня наступившей менструации до первого дня следующей менструации. Длительность менструального цикла у женщин репродуктивного возраста от21 до 35 дней, у 60% женщин она составляет примерно 28 дней.

Репродуктивная система является функциональной и «работает» по принципу обратной связи, т. е. обратной афферентации (постоянная оценка конечного эффекта).

Репродуктивная система функционирует по иерархическому типу. В ней существует 5 уровней, каждый из которых регулируется вышележащими структурами по механизму обратной связи.

I уровень - ткани-мишени (половые органы, молочные железы, волосяные фолликулы, кожа, кости, жировая ткань). Клетки этих органов и тканей содержат рецепторы, чувствительные к половым гормонам. Содержание стероидных рецепторов в эндометрии изменяется в зависимости от фазы менструального цикла. Наиболее выраженные циклические изменения происходят в эндометрии. По характеру этих изменений выделяют фазу пролиферации, фазу секреции и фазу кровотечения (менструация).

Фаза пролиферации - фолликулиновая (5-14-й дни цикла) продолжается в среднем 14 дней (она может быть короче или длиннее на 3 дня). Она начинается после менструации и заключается в разрастании желез, стромы и сосудов.


Под влиянием постепенно повышающейся концентрации эстрадиола в ранней (5-7-й день) и средней (8-10-й день) стадиях фазы пролиферации происходит рост желез и разрастание стромы. Железы эндометрия имеют вид прямых или несколько извитых трубочек с прямым просветом. Между клетками стромы располагается сеть аргирофильных волокон. Спиральные артерии мало извиты.

В поздней стадии фазы пролиферации (11-14-й день) железы эндометрия становятся извитыми, иногда они штопорообразны, просвет их несколько расширен. В эпителии некоторых желез обнаруживаются мелкие субнуклеарные вакуоли, содержащие гликоген. Спиральные артерии, растущие из базального слоя, достигают поверхности эндометрия, они несколько извиты. Сеть аргирофильных волокон концентрируется в строме вокруг желез эндометрия и кровеносных сосудов. Толщина функционального слоя эндометрия к концу фазы пролиферации составляет 4-5 мм.

Фаза секреции (лютеиновая) длится 14 дней (+1 день) и непосредственно связана с активностью желтого тела. Она характеризуется тем, что эпителий желез начинает вырабатывать секрет, содержащий кислые гликозаминогликаны, гликопротеиды, гликоген. В ранней стадии фазы секреции (15-18-й день) появляются первые признаки секреторных превращений. Железы становятся более извитыми, просвет их несколько расширен. Во всех железах эндометрия появляются крупные субнуклеарные вакуоли, оттесняющие ядро к центру клетки. В вакуолях обнаруживается гликоген. В поверхностных слоях эндометрия иногда могут наблюдаться очаговые кровоизлияния, произошедшие во время овуляции и связанные с кратковременным снижением уровня эстрогенов.

В средней стадии фазы секреции (19-23-й день), когда имеет место максимальная концентрация прогестерона и повышение уровня эстрогенов, функциональный слой эндометрия становится более высоким (его толщина достигает 8-10 мм) и отчетливо разделяется на 2 слоя. Глубокий (губчатый, спонгиозный) слой, граничащий с базальным, содержит большое количество сильно извитых желез и небольшое количество стромы. Плотный (компактный) слой составляет ¼-1/5 толщины функционального слоя. В нем меньше желез и больше соединительнотканных клеток. В просвете желез находится секрет, содержащий гликоген и кислые мукополисахариды. Наивысшая степень секреции обнаруживается на 20-21-й день. К 20-му дню в эндометрии обнаруживается максимальное количество протеолитических и фибринолитических ферментов.

На 20-21-й день цикла в строме эндометрия возникают децидуальноподобные превращения (клетки компактного слоя становятся крупными, округлой или полигональной формы, в их цитоплазме появляется гликоген). Спиральные артерии резко извиты, образуют «клубки» и обнаруживаются во всем функциональном слое. Вены расширены. В средней стадии фазы секреции происходит имплантация бластоцисты. Самые лучшие условия для имплантации представляют структура и функциональное состояние эндометрия на 20-22-й день (6-8-й дни после овуляции) 28-дневного менструального цикла. Поздняя стадия фазы секреции (24-27-й день) в связи с началом регресса желтого тела и снижением концентрации продуцируемых им гормонов характеризуется нарушением трофики эндометрия и постепенным нарастанием в нем дегенеративных изменений. Уменьшается высота эндометрия (примерно на 20-30% по сравнению со средней стадией фазы секреции), сморщивается строма функционального слоя, усиливается складчатость стенок желез, и они приобретают звездчатые или пилообразные очертания. Из зернистых клеток стромы эндометрия выделяются гранулы, содержащие релаксин. Последний способствует расплавлению аргирофильных волокон функционального слоя, подготавливая менструальное отторжение слизистой оболочки. На 26-27-й день цикла в поверхностных слоях компактного слоя наблюдаются лакунарное расширение капилляров и очаговые кровоизлияния в строму. Состояние эндометрия, подготовленного таким образом к распаду и отторжению, называется анатомической менструацией и обнаруживается за сутки до начала клинической менструации.

Фаза кровотечения (менструация) включает десквамацию и регенерацию эндометрия. В связи с регрессом, а затем и гибелью желтого тела и резким спадом содержания гормонов в эндометрии нарастают гипоксия и те расстройства, которые начались еще в поздней стадии фазы секреции. В связи с длительным спазмом артерий наблюдается стаз крови, образование тромбов, повышенная проницаемость и ломкость сосудов, кровоизлияния в строму, лейкоцитарная инфильтрация. Развивается некробиоз ткани и ее расплавление. Вслед за длительным спазмом сосудов наступает их паретическое расширение, сопровождающееся усиленным притоком крови и разрывом стенки сосудов. Происходит отторжение (десквамация) некротизированных отделов функционального слоя эндометрия.

Полное отторжение обычно заканчивается на 3-й день цикла.

Регенерация (3-4-й день цикла) происходит после отторжения некротизированного функционального слоя из тканей базального слоя (краевых отделов желез). В физиологических условиях на 4-й день цикла вся раневая поверхность слизистой оболочки эпителизируется.

II уровень репродуктивной системы - яичники . В них происходит рост и созревание фолликулов, овуляция, образование желтого тела, синтез стероидов.

Основная масса фолликулов (90%) претерпевает атретические изменения. И лишь небольшая часть фолликулов проходит цикл развития от примордиального до преовуляторного фолликула, овулирует и превращается в желтое тело. У человека на протяжении одного менструального цикла развивается только один фолликул. Доминантный фолликул в первые дни менструального цикла имеет диаметр 2 мм, а к моменту овуляции (в среднем за 14 дней) увеличивается до 21 мм. Объем фолликулярной жидкости увеличивается в 100 раз.

Этапы развития доминантного фолликула. Примордиальный фолликул состоит из яйцеклетки, окруженной одним рядом уплощенных клеток фолликулярного эпителия. В процессе созревания фолликула яйцеклетка увеличивается в размере, клетки фолликулярного эпителия размножаются и округляются, образуется зернистый слой фолликула (stratum granulosum). В гранулезных клетках зреющего фолликула имеются рецепторы к гонадотропным гормонам, определяющие чувствительность яичников к гонадотропинам и регулирующие процессы фолликуло- и стероидогенеза. В толще зернистой оболочки за счет секреции и распада клеток фолликулярного эпителия и транссудата из кровеносных сосудов появляется жидкость. Яйцеклетка оттесняется жидкостью к периферии, окружается 17-50 рядами клеток гранулезы. Возникает яйценосный холмик (cumulus oophorus). В граафовом пузырьке яйцеклетка окружена стекловидной оболочкой (zona pellucida). Строма вокруг зреющего фолликула дифференцируется на наружную (tunica externa thecae folliculi) и внутреннюю покрышки фолликула (tunica interna thecae folliculi). Зреющий фол­ ликул превращается в зрелый.

В фолликулярной жидкости резко увеличивается содержание эстрадиола (Е2) и фолликулостимулирующего гормона. Подъем уровня Е2 стимулирует выброс лютеинизирующего гормона и овуляцию. Фермент коллагеназа обеспечивает изменения в стенке фолликула (истончение и разрыв). Играют роль в разрыве преовуляторного фолликула простагландины (nrF2a и ПГЕ2) и протеолитические ферменты, содержащиеся в фолликулярной жидкости, а также окситоцин и релаксин.

На месте разорвавшегося фолликула образуется желтое тело, клетки которого секретируют прогестерон, эстрадиол и андрогены. Полноценное желтое тело образуется только тогда, когда в преовуляторном фолликуле содержится достаточное количество гранулезных клеток с высоким содержанием рецепторов ЛГ.

Стероидные гормоны продуцируются клетками гранулезы, клетками theca folliculi interna и в меньшей степени клетками theca folliculi externa. Клетки гранулезы и тека-клетки участвуют в синтезе эстрогенов и прогестерона, а клетки theca folliculi externa - в синтезе андрогенов.

Исходным материалом для всех стероидных гормонов является холестерол, образующийся из ацетата или липопротеидов низкой плотности. Он поступает в яичник с током крови. В синтезе стероидов на первых этапах участвуют ФС Г и ЛГ, ферментные системы - ароматазы. Андрогены синтезируются в тека-клетках под влиянием ЛГ и с током крови попадают в гранулезные клетки. Конечные этапы синтеза (превращения андрогенов в эстрогены) происходят под влиянием ферментов.

В клетках гранулезы образуется белковый гормон - ингибин, тормозящий выделение ФСГ. В фолликулярной жидкости, желтом теле, матке и маточных трубах обнаружен окситоцин. Окситоцин, секретируемый яичником, оказывает лютеолитическое действие, способствуя регрессу желтого тела. Вне беременности в клетках гранулезы и желтого тела очень мало релаксина, а в желтом теле при беременности его содержание возрастает во много раз. Релаксин оказывает токолитическое действие на матку и способствует овуляции.

III уровень - передняя доля гипофиза (аденогипофиз). В аденогипофизе секретируются гонадотропные гормоны: фолликулостимулирующий, или фоллитропин (ФСГ); лютеинизирующий, или лютропин (ЛГ); пролактин (ПрЛ); другие тропные гормоны: тиреотропный гормон, тиротропин (ТТГ); соматотропный гормон (СТГ); адренокортикотропный гормон, кортикотропин (АКТГ); меланостимулирующий, меланотропин (МСГ) и липотропный (ЛПГ) гормоны. ЛГ и ФСГ являются гликопротеидами, ПрЛ - полипептидом.

Железой-мишенью для ЛГ и ФС Г является яичник. ФСГ стимулирует рост фолликула, пролиферацию клеток гранулезы, образование рецепторов ЛГ на поверхности клеток гранулезы. ЛГ стимулирует образование андрогенов в тека-клетках. ЛГ и ФСГ способствуют овуляции. ЛГ стимулирует синтез прогестерона в лютеинизированных клетках гранулезы после овуляции.

Основная роль пролактина - стимуляция роста молочных желез и регуляция лактации. Он оказывает гипотензивное действие, дает жиромобилизующий эффект. Повышение уровня пролактина тормозит развитие фолликулов и стероидогенез в яичниках.

IV уровень репродуктивной системы - гипофизотропная зона гипоталамуса : вентромедиальные, дорсомедиальные и аркуатные ядра. В этих ядрах образуются гипофизотропные гормоны. Выделен, синтезирован и описан рилизинг-гормон - люлиберин. Выделить и синтезировать фоллиберин до настоящего времени не удалось. Поэтому гипоталамические гонадотропные либерины обозначают ГТ-РГ, так как рилизинг-гормон стимулирует выделение как ЛГ, так и ФС Г передней долей гипофиза.

ГТ-РГ гипоталамуса из аркуатных ядер по аксонам нервных клеток попадает в терминальные окончания, тесно соприкасающиеся с капиллярами медиальной возвышенности гипоталамуса. Капилляры формируют портальную кровеносную систему, объединяющую гипоталамус и гипофиз. Особенностью этой системы является возможность тока крови в обе стороны, что важно в осуществлении механизма обратной связи. Нейросекрет гипоталамуса оказывает биологическое действие на организм различными путями.

Основной путь - парагипофизарный - через вены, впадающие в синусы твердой мозговой оболочки, а оттуда в ток крови. Трансгипофизарный путь - через систему воротной вены к передней доле гипофиза. Обратное влияние на гипоталамус (стероидный контроль половых органов) осуществляется через вертебральные артерии. Секреция ГТ-РГ генетически запрограммирована и происходит в определенном пульсирующем ритме с частотой примерно один раз в час. Этот ритм получил название цирхорального (часового). Он формируется в пубертатном возрасте и является показателем зрелости нейросекреторных структур гипоталамуса. Цирхоральная секреция ГТ-РГ запускает гипоталамо-гипофизарно-яичниковую систему. Под влиянием ГТ-РГ происходит выделение ЛГ и ФС Г из передней доли гипофиза.

В модуляции пульсации ГТ-РГ играет роль эстрадиол. Величина выбросов ГТ-РГ в преовуляторный период (на фоне максимального выделения эстрадиола) значительно выше, чем в раннюю фолликулиновую и лютеиновую фазы. Частота выбросов остается прежней. В дофаминергических нейронах аркуатного ядра гипоталамуса есть рецепторы эстрадиола. Основная роль в регуляции выделения пролактина принадлежит дофаминер- гическим структурам гипоталамуса. Дофамин (ДА) тормозит выделение пролак­ тина из гипофиза. Антагонисты дофамина усиливают выделение пролактина.

V уровень в регуляции менструального цикла - надгипоталамические церебральные структуры. Воспринимая импульсы из внешней среды и от интерорецепторов, они передают их через систему передатчиков нервных импульсов (нейротрансмиттеров) в нейросекреторные ядра гипоталамуса.

В эксперименте показано, что в регуляции функции гипоталамических нейронов, секретирующих ГТ-РГ, ведущая роль принадлежит дофамину, норадреналину и серотонину. Функцию нейротрансмиттеров выполняют нейропептиды морфиноподобного действия (опиоидные пептиды) - эндорфины (ЭНД) и энкефалины (ЭНК). Они регулируют гонадотропную функцию гипофиза. ЭН Д подавляют секрецию ЛГ, а их антагонист - налоксон - приводит к резкому повышению секреции ГТ-РГ. Считают, что эффект опиоидов осуществляется за счет изменения содержания ДА (ЭНД снижают синтез ДА, вследствие чего стимулируется секреция и выделение пролактина).

В регуляции менструального цикла участвует кора большого мозга. Имеются данные об участии амигдалоидных ядер и лимбической системы в нейрогуморальной регуляции менструального цикла. Электрическое раздражение амигдалоидного ядра (в толще больших полушарий) вызывает в эксперименте овуляцию. При стрессовых ситуациях, при перемене климата, ритма работы наблюдаются нарушения овуляции. Нарушения менструального цикла реализуются через изменение синтеза и потребления нейротрансмиттеров в нейронах мозга.

Таким образом, репродуктивная система представляет собой суперсистему, функциональное состояние которой определяется обратной связью входящих в нее подсистем. Регуляция внутри этой системы может идти по длинной петле обратной связи (гормоны яичника - ядра гипоталамуса; гормоны яичника - гипофиз), по короткой петле (передняя доля гипофиза - гипоталамус), по ультракороткой (ГТ-РГ - нервные клетки гипоталамуса). Обратная связь может быть как отрицательной, так и положительной. При низком уровне эстрадиола в раннюю фолликулярную фазу усиливается выделение ЛГ передней долей гипофиза - отрицательная обратная связь. Овуляторный пик выделения эстрадиола вызывает выброс ФСГ и ЛГ - положительная обратная связь. Примером ультракороткой отрицательной связи может служить увеличение секреции ГТ-РГ при снижении его концентрации в нейросекреторных нейронах гипоталамуса.

Помимо циклических изменений в системе гипоталамус-гипофиз-яичники и в органах-мишенях на протяжении менструального цикла имеют место циклигеские изменения функционального состояния многих систем («менструальная волна»). Эти циклические изменения у здоровых женщин находятся в пределах физиологических границ.

При изучении функционального состояния центральной нервной системы выявлена некоторая тенденция к преобладанию тормозных реакций, снижение силы двигательных реакций во время менструаций.

В фазе пролиферации отмечается преобладание тонуса парасимпатического, а в секреторной фазе - симпатического отделов вегетативной нервной системы.

Состояние сердечно-сосудистой системы в течение менструального цикла характеризуется волнообразными функциональными колебаниями. Так, в I фазе менструального цикла капилляры несколько сужены, тонус всех сосудов повышен, ток крови быстрый. Во II фазе менструального цикла капилляры несколько расширены, тонус сосудов снижен; ток крови не всегда равномерный.

Циклическим колебаниям подвержен морфологический и биохимический состав крови. Содержание гемоглобина и количество эритроцитов наиболее высоки в 1-й день менструального цикла. Самое низкое содержание гемоглобина отмечается на 24-й день цикла, а эритроцитов - ко времени овуляции. Меняется на протяжении менструального цикла содержание микроэлементов, азота, натрия, жидкости. Известны колебания настроения и появление некоторой раздражительности у женщин в дни, предшествующие менструации.

Регуляция репродуктивной функции осуществляется единой функциональной нейроэндокринной системой. Функциональная система должна обязательно включать в себя центральное - интегрирующее звено и периферические (эффекторные, исполнительные) органы с различным количеством промежуточных звеньев (рис. 14).

Рис. 14.

В нейроэндокринной системе регуляции репродуктивной функции выделяют пять звеньев, взаимодействующих между собой по принципу прямой и обратной отрицательной и положительной взаимосвязи, определяемой характером сигналов, поступающих с периферии. Ведущая роль в деятельности нейроэндокринных систем отводится отрицательным обратным связям. Физиология и патология менструального цикла в клиническом аспекте наиболее полно отражают состояние репродуктивной системы женщины.

Высшим уровнем регуляции репродуктивной системы являются структуры, составляющие акцептор результата действия. В них воспринимается результат действия всей системы и ее интеграция. К структурам акцептора результата действия относятся высшие отделы нервной системы, миндалевидный комплекс, гиппокамп и другие гипоталамические структуры Они влияют на функцию гипоталамуса и гипофиза, причем влияние может быть стимулирующим и ингибирующим. Различные участки указанных структур стимулируют или тормозят секрецию и выброс гонадолиберинов и гонадотропинов, ускоряют или блокируют овуляцию, ускоряют или задерживают половое развитие, повышают или снижают сексуальность. Физиологические эффекты структур высшего уровня регуляции осуществляются через нервные и гуморальные связи. Ведущее место в этих взаимосвязях отводится мозговым нейротрансмиттерам (катехоламины, серотонин, ацетилхолин, ГАМК, глютаминовая кислота, энкефалины), которые идентефицированы в экстрапирамидных образованиях. Церебральные нейротрансмиттеры регулируют гипоталамо-гипофизарно-яичниковый уровни репродуктивной функции. Так, они определяют циркадные и цирхоральные ритмы, которые являются ведущими в функционировании всей репродуктивной системы. Эндокринный гомеостаз организма поддерживается гипоталамо-гипофизарной системой, состояние которой регулируется нейротрансмиттерами. Основными из них являются биогенные амины и энкефалины.

Биогенные амины, в частности катехоламины (адреналин, норадреналин, дофамин) и серотонин, - высокоэффективные физиологические вещества, как нейромедиаторы и гормоны оказывают многогранное влияние на репродуктивную систему и на все органы и системы организма в физиологических и патологических условиях.

Открытие эндогенных опиоидных пептидов (ЭОП) в середине 1970-х годов позволило значительно расширить представления о нейроэндокринной системе регуляции репродуктивной функции. Выделяют три группы ЭОП: энкефалины, эндорфины и динорфины. ЭОП имеются в различных структурах мозга, вегетативной нервной системы, других тканях и органах (поджелудочной железе, ЖКТ, плаценте, сердце, желчном пузыре и др.), а также в биологических жидкостях организма (плазме, амниотической, фолликулярной, сперме и др.). ЭОП влияют на созревание фолликула, желтого тела, овуляцию, синтез и выброс гормонов гипоталамусом и гипофизом, а это свидетельствует об их многообразной роли в регуляции репродуктивной системы и участии в формировании различных ее патологических состояний. Так, с повышением уровня ЭОП связывается возникновение различных форм аменорей центрального генеза, синдрома поликистозных яичников, болезни Иценко-Кушинга, гирсутизма, ожирения. С помощью ингибиторов опиоидных рецепторов (ОР) налоксона и налтрексона устраняются угнетающие эффекты ЭОП на функцию гипофиза, овуляцию и другие процессы генеративной функции. Установлены и многие другие эффекты ЭОП: терморегуляция (способствуют гипертермии) и антиноцептивное (обезболивающее) действие.

В то же время в клинической практике возможности использования ЭОП с целью регуляции репродуктивной системы до настоящего времени весьма ограниченны.

В структуре высшего звена регуляции репродуктивной функции рассматривается и эпифиз как важнейший нейроэндокринный передатчик, ранее известный как ингибитор развития половой системы. Метилиндолы и пептиды, содержащиеся в эпифизе, по месту их биосинтеза и физиологической роли разделяются на три группы: нейрогипофизарные (аргинин - вазопрессин, аргинин - вазотонин, окситоцин, нейрофизин), воспринимающие информацию от мозга; аденогипофизарные (МСГ, ЛГ, ФСГ, СТГ, ПРЛ), передающие информацию о состоянии регуляторной способности эндокринной системы, собственный гормон эпифиза - мелатонин, ингибирующий уровень ЛГ и ПРЛ. Освобождается мелатонин ритмично с учетом времени суток (больше ночью) и сезонов года (больше зимой). Установлена роль эпифиза в регуляции полового созревания, функционального состояния гипоталамуса, гипофиза и яичников, беременности, лактации, а также в развитии ряда гинекологических заболеваний. Следовательно, эпифиз занимает важное место в нейроэндокринном гомеостазе организма.

Вторым уровнем регуляции репродуктивной функции является гипоталамус, в частности его гипофизотропная зона, состоящая из нейронов вентро- и дорсомедиальных аркуатных ядер, обладающих нейросекреторной активностью либеринов и статинов. Все 10 либеринов и статинов гипоталамуса участвуют в регуляции репродуктивной функции, взаимодействуя между собой. Особая роль при этом принадлежит люлиберину, фолиберину и пролактостатину-пролактинингибирующему фактору (ПИФ). Стимулируется выработка ПРЛ тиролиберином. Главная роль в регуляции выделения ПРЛ принадлежит дофаминергическим структурам. Так, дофамин тормозит освобождение пролактина из лактофоров гипофиза, а его антагонисты (метилдофа, резерпин, аминазин) усиливают его выделение. Путем воздействия на адренергические структуры с помощью парлодела (бромкриптина) удается успешно лечить гиперпролактинемию функционального и органического генеза.

Цирхоральная нейросекреторная функция гипоталамуса, которая модулируется импульсами из экстрагипоталамических структур и коры головного мозга, формируется в пубертатном возрасте и свидетельствует о зрелости нейросекреторных структур гипоталамуса. Регулируя гипофизарно-яичниковую подсистему, она запускает генеративную функцию. Следует также отметить, что определенную роль в выделении гипоталамусом гормонов, как и нейротрансмиттеров, играет уровень эстрадиола в крови.

Третьим уровнем регуляции репродуктивной функции является гипофиз. В нем вырабатываются тропные гормоны периферических эндокринных желез (ФСГ, ЛГ, ПРЛ, ТТГ, АКТГ) и другие. Гонадотропины, взаимодействуя между собой, оказывают влияние на функцию яичников. ФСГ стимулирует рост и созревание фолликулов, секрецию ими эстрогенов. Образование и деятельность желтого тела контролируются ЛГ и ПРЛ. ПРЛ также контролирует рост молочных желез и процесс лактации. В то же время эстрогены ингибируют синтез и выброс ФСГ, а прогестерон - ЛГ и ПРЛ. Таким образом, в зависимости от концентрации и соотношения половых стероидных гормонов угнетается или активируется продукция соответствующих тропных гормонов гипофиза.

Периферические эндокринные органы (яичники, щитовидная железа, надпочечники) представляют четвертый уровень регуляции репродуктивной функции. Главная роль в них принадлежит яичникам.

В них происходят процессы биосинтеза стероидов и развития фолликулов. Фолликулогенез начинается в антенатальном периоде, заканчивается в постменопаузальном. Большинство фолликулов претерпевают атретические изменения и только часть (до 10%) проходит полный цикл развития от примордиального до преовуляторного, затем после овуляции превращается в желтое тело. Доминантный фолликул в первые дни менструального цикла имеет диаметр 2 мм, к моменту овуляции увеличивается до 20-25 мм. Количество фолликулярной жидкости к овуляции увеличивается в 100 раз и более, а клетки гранулезы - до 50 х 106 с 0,5 х 106. В фолликулярной жидкости резко возрастает уровень гормонов, особенно эстрадиола и ФСГ, за счет чего отмечается пик ЛГ и происходит овуляция - разрыв базальной мембраны доминантного фолликула и кровотечение из капилляров тека-клеток. Процесс овуляции совершается с участием простагландинов (F2 и Е2), протеолитических ферментов, окситоцина и релаксина. На процесс овуляции влияют и внешние факторы (питание, стрессовые ситуации, световой и температурный режимы), но главными являются половые гормоны. Повышается уровень люлиберина, затем на фоне увеличенной секреции эстрадиола и последующего пика ЛГ при повышенной чувствительности гипофиза к люлиберину и происходит овуляция. Накануне ее имело место снижение уровня ПРЛ. Затем начинается следующая фаза цикла - лютеиновая, или фаза желтого тела. Овуляция может сопровождаться кратковременными болями внизу живота. Вскоре увеличиваются слизистые выделения из влагалища, происходят падение базальной температуры с повышением ее уже на следующий день, увеличение уровня прогестерона и секреторная трансформация эндометрия, а также другие изменения в различных органах и системах организма. Все это лежит в основе методов диагностики овуляции и ряда патологических состояний - тестов функциональной диагностики.

Развитие фолликулов с созреванием яйцеклетки и в последующем желтого тела происходит одновременно с интенсивным процессом биосинтеза стероидных половых гормонов - эстрогенов, прогестерона и андрогенов. В первую фазу цикла в яичнике эстрадиола секретируется 50- 100 мкг/сут, прогестерона - 2-5 мг/сут, во вторую фазу - соответственно 200-300 мкг/сут и 20- 25 мг/сут, а к моменту овуляции - 400-900 мкг/сут эстрадиола и 10-15 мг/сут прогестерона. В яичниках синтезируются и андрогены (андростендион) до 1,5 мг/сут (или 0,15 мг/сут тестостерона). Столько же его образуется и в надпочечниках. В меньшем количестве тестостерон секретируется в яичниках и в большем - в коре надпочечников из дегидроэпиандростерона и дегидроэпиандростерона сульфата. Тестостерон путем ароматизации с помощью энзимов превращается в дегидротестостерон - наиболее активный андроген, количество которого в женском организме составляет 50-75 мкг/сут. Андрогены синтезируются в тека-клетках, а эстрогены - в гранулезных клетках, в том числе из андрогенов, поступающих из тека-клеток

В гранулезных клетках фолликулов образуются также ингибин. тормозящий выделение ФСГ гипофизом, белковые вещества местного действия - окситоцин и релаксин, а также простагландины. Окситоцин оказывает лютеолитическое действие на желтое тело, а релаксин - токолитическое на миометрий

Максимальная гормональная активность структур всех четырех уровней отмечается в периовуляторный период (до, во время и после овуляции). Неоднозначные, а иногда и противоречивые данные о локализации и содержании рилизинг-гормонов, как и гормонов нижерасположенных структур, свидетельствуют о том, что функциональное состояние всех уровней регуляции следует рассматривать только в тесной взаимосвязи. Так, секреторная функция гипоталамуса по продукции рилизинг-гормонов зависит не только от нейротрансмиттерных механизмов, но и в значительной степени от информации, поступающей с периферии, об уровне циркулирующих в крови гормонов, от скорости их утилизации, что связано с активностью инактивирующих их ферментов. Поэтому наличие в гипоталамических нейроцитах и аденоцитах гипофиза эстрогенных рецепторов (с учетом уровня эстрогенов в крови) не только влияет на продукцию гонадолиберинов, но и модулирует чувствительность к ним у гонадотропинов гипофиза. Подобным же образом уровень стероидных гормонов определяет влияние рилизинг-гормонов на идентичные аденоциты гипофиза. При дефиците периферических гормонов клетки гипофиза становятся высокочувствительными и на аналогичную концентрацию рилизинг-гормона отвечают выбросом большого количества гонадотропинов. Нейротрансмиттерные механизмы (с учетом уровня гормонов в крови) регулируют не только функцию гипоталамуса, но и осуществляют контроль за тройными гормонами гипофиза.

Влияние надпочечников на регуляцию репродуктивной функции осуществляется через гормоны коры и мозгового вещества этих желез. Кора надпочечников имеет морфологическое сходство с корой яичников по происхождению из мезодермальных зачатков, что и определяет сходство их гормонов по химическому строению, а также по цикличности биосинтеза. Известно, что различные нарушения биосинтеза и метаболизма кортикостероидов приводят к патологии гормональной функции яичников и обусловливают многие гинекологические заболевания (синдром Иценко-Кушинга, склерополикистозных яичников и др.). С другой стороны, всевозможные нарушения генеративной функции сопровождаются патофизиологическими изменениями коры надпочечников. Не менее очевидна роль симпатоадреналовой системы в общей НЭС регуляции репродуктивной функции. С помощью катехоламинов можно воздействовать на процессы созревания фолликулов, желтого тела и овуляции.

Влиянием на адренергические структуры с помощью парлодела (бромкриптина) удается корригировать нарушения генеративной функции, наблюдающиеся при гиперпролактинемическом синдроме. Установлена также взаимосвязь структур регуляции функции яичников и надпочечников в гипоталамусе и гипофизе, а также через нейротрансмиттерные механизмы.

Роль щитовидной железы в регуляции репродуктивной функции отчетливо просматривается как в норме, так и особенно при ее функциональных нарушениях по типу гипер- и гипотиреоза. Избыток Т3 и Т4 приводит к увеличению ЛГ, подавлению овуляторного пика гормонов, недостаточности лютеиновой фазы, нарушениям менструального цикла и бесплодию. При дефиците тиреоидных гормонов снижается биосинтез ФСГ и ЛГ, угнетается функция яичников со всеми дальнейшими проявлениями их недостаточности.

Патология гипофизарно-тиреоидной системы особенно отражается на течении беременности, развитии плода. Если выраженные клинические формы заболеваний щитовидной железы вызывают различные нарушения менструального цикла и бесплодие, то при субклинических формах наблюдаются невынашивание и другие осложнения в течении беременности и развитии плода.

Пятым уровнем регуляции репродуктивной системы являются половые органы и молочные железы женщины, а также кожа, кости и жировая ткань. В них реализуют свое действие половые стероидные гормоны, в связи с чем эти органы являются органами-мишенями. Клетки этих тканей и органов имеют рецепторы половых гормонов. Выделяют цитоплазменные (цитозолрецепторы) и ядерные рецепторы. Цитоплазменные рецепторы строго специфичны к эстрогенам, прогестерону и тестостерону, а ядерные могут быть акцепторами (наряду со стероидными гормонами) аминопептидов, инсулина и глюкагона. Для прогестерона по рецепторному связыванию антагонистами считаются глюкокортикоиды.

Следует отметить, что, по мнению П.В Сергеева (1984,1987), первой структурой, взаимодействующей со стероидными гормонами в процессе реализации биологической активности на клеточном уровне, является не цитоплазма, а цитоплазматическая мембрана клеток-мишеней, в которой также содержатся рецепторы стероидных гормонов.

Рецепторы к половым гормонам обнаружены во всех структурах репродуктивной системы и в центральной нервной системе. Содержание стероидных рецепторов и их активность в половых органах, и особенно в эндометрии, изменяются с учетом фазы цикла, т.е. зависят от уровня гормонов в крови.

Рецепторы в клетках яичников (к гонадотропинам), гипофиза (к рилизинг-гормонам) и гипоталамуса (к нейротрансмиттерам) локализуются на клеточной мембране.

Гормон-рецепторные комплексы взаимодействуют с различными структурами клетки-мишени и посредством метаболических реакций проявляют конечные гормональные эффекты. Благодаря им и совершаются многочисленные изменения в половых органах и во всех структурах репродуктивной системы, которые характеризуются по периодам жизни женщины при различных физиологических и патологических состояниях.

Функционирование клеточных рецепторных систем генетически детерминированно, что и определяет как время полового созревания, так и продолжительность периодов жизни женщины и деятельности ее репродуктивной системы.

Характеризуя нейроэндокринную систему регуляции репродуктивной функции женщины, важно учитывать биоритмы (суточные, месячные, годовые, сезонные, многолетние и т.д.). Сущность сводится к тому, что колебания различных физиологических процессов, в том числе и генеративной функции, различаются по указанным периодам. Фазовая временная организация различных функций организма обеспечивается также регуляторными органами и системами. Многие суточные ритмы колебаний выделения гормонов связаны с деятельностью эпифиза, циркадные определяются гипоталамусом и т.д. Нарушение привычного режима жизни при стрессовых ситуациях, резких изменениях климатических условий приводит к состоянию десинхроноза. Хотя эндокринные функции относятся к инертным системам, десинхронозы возможны и в них. Это может привести к различным нарушениям репродуктивной способности и гинекологическим заболеваниям.

В заключение можно отметить высокую надежность и приспособляемость нейроэндокринной регуляции репродуктивной системы к постоянно меняющимся условиям внешней среды за счет многосторонних адаптационных механизмов.

Репродуктивная функция женщины сопряжена с беременностью и родами для воспроизводства потомства. Беременность может наступить только после созревания системы репродукции, которая включает в себя яичники и матку, а также регулирующие их деятельность механизмы нейрогормонально-гуморальной системы.

Репродуктивный, или детородный, период - один из самых длительных в жизни женщины. В связи с состоянием репродуктивной системы различают: внутриутробный период; период новорожденности (до 1 года); детства (до 7-8 лет); полового созревания - препубертатный (до 14 лет) и пубертатный (до 17 лет); детородный, или репродуктивный (до 40-45 лет). Далее наступает последняя менструация - менопауза (menos - месяц, pauses -окончание), а затем следует постменопауза, связанная с постепенным увяданием организма. 2-3 года до менопаузы (пременопауза) и 2 года после нее (ранняя постменопауза) называют периодом перименопаузы. Пременопауза представляет собой переходный период, который ранее назывался климактерическим (climak - лестница, переход). В это время постепенно угасает функция яичников, наблюдается дисбаланс гормонов, участвующих в регуляции репродуктивной функции.

Выделение этих периодов жизни женщины в определенной мере условно, так как индивидуальные колебания чрезвычайно велики. Большое значение имеют национальность, условия жизни, особенности климата. Так, в южных районах препубертатный и пубертатный периоды, а также менопауза у женщин наступают раньше.

Отражением зрелости репродуктивной системы является установление менструального цикла.

МЕНСТРУАЛЬНЫЙ ЦИКЛ

Менструальный цикл подразумевает циклически повторяющиеся изменения во всем организме женщины, преимущественно в репродуктивной системе, внешним проявлением которых служат кровяные выделения из половых органов - менструации. На протяжении менструального цикла в яичниках и эндометрии обеспечивается созревание яйцеклетки, а в случае оплодотворения - имплантация зародыша в подготовленную слизистую оболочку матки.

Менструации - повторяющиеся с определенным интервалом кровяные выделения из половых путей в течение репродуктивного периода. В норме менструации отсутствуют во время беременности и лактации.

Первая менструация (менархе) наступает в 10-12 лет до созревания яйцеклетки или она может быть следствием созревания ее. Следовательно, половой акт, произошедший до первой менструации, может привести к беременности. После менархе менструации либо сразу становятся регулярными, либо в течение 1-1,5 лет наступают через 2-3 мес и только по прошествии этого времени становятся регулярными.

Появление менструаций еще не свидетельствует о готовности организма к вынашиванию беременности. Если беременность наступила до 17 лет, то беременных относят к категории "юных" первородящих. Считают, что "юные первородящие" ни в физическом, ни тем более в психологическом плане не готовы к рождению и воспитанию ребенка. Женский организм полностью готов к родам в возрасте 17-18 лет.

Большинство акушеров 1-й день менструации принимают за 1-й день менструального цикла, но некоторые ученые предлагают исчислять начало цикла со дня овуляции, и тогда дни перед овуляцией, начиная с 1-го дня предшествующей менструации, обозначают отрицательной величиной, а дни от овуляции к последующей менструации - положительной (-14 -8; -6 -4; -2 0; +2 +4; +6 +8; +10 +14).

ЯИЧНИКИ

Менструальный цикл имеет две четкие фазы: 1-я фаза - фолликулиновая, 2-я - лютеиновая. В 1-ю фазу происходят рост фолликула (фолликулогенез) и созревание яйцеклетки, что приводит к овуляции - нарушению целостности фолликула и попаданию яйцеклетки в брюшную полость, во 2-ю, лютеиновую, фазу на месте разорвавшегося фолликула образуется желтое тело.

При рождении в яичниках девочки находится примерно 2 млн примордиальных фолликулов. Их основная масса претерпевает атретические изменения в течение всей жизни, и только очень небольшая часть проходит полный цикл развития от примордиального до зрелого с образованием в последующем желтого тела. Ко времени менархе в яичниках содержится 200-400 тыс. примордиальных фолликулов. На протяжении одного менструального цикла развивается, как правило, только один фолликул с яйцеклеткой. Созревание большего числа фолликулов способствует многоплодной беременности.

В фолликулогенезе различают образование примордиального фолликула, преантрального, антрального, доминантного (рис. 3.1).

Рис. 3.1. Строение яичника. Этапы развития доминантного фолликула.1 - зародышевый эпителий; 2 - белочная оболочка; 3 - сосуды яичника (конечная ветвь яичниковой артерии); 4 - примордиальный фолликул; 5- преантральный фолликул; 6 - антральный фолликул; 7 - преовуляторный фолликул; 8- овуляция; 9 - желтое тело

Примордиальный фолликул представляет собой незрелую яйцеклетку, окруженную фолликулярным и гранулезным (зернистым) эпителием. Снаружи фолликула имеются соединительные тека-клетки вытянутой формы. В течение менструального цикла от 3 до 30 примордиальных фолликулов преобразуются в преантральные.

Преантральный, или первичный, фолликул больше примордиального из-за пролиферации гранулезного слоя. Яйцеклетка несколько увеличена и окружена блестящей оболочкой - zona pellicida .

Гранулезные клетки антрального, или вторичного, фолликула увеличиваются и продуцируют фолликулярную жидкость, которая, накапливаясь, образует полость яйцеклетки.

Доминантный (преовуляторный) фолликул выделяется к 8-му дню цикла из антральных фолликулов. Он самый крупный, диаметром до

20 мм (рис. 3.2.). Доминантный фолликул имеет богато васкуляризированный слой гранулезных клеток и тека-клеток. Наряду с ростом доминантного фолликула созревает яйцеклетка (ооцит), в которой происходит мейоз. Образование доминантного фолликула сопровождается обратным развитием, или атрезией, остальных вступивших в развитие (рекрутированных) фолликулов.

Рис. 3.2. Зрелый фолликул.1 - ооцит; 2 - гранулезные клетки; 3 - тека-клетки; 4 - базальная мембрана

Овуляция - разрыв созревшего доминантного фолликула и выход из него в брюшную полость яйцеклетки. Овуляция сопровождается кровотечением из разрушенных капилляров. После выхода яйцеклетки в полость фолликула быстро врастают образующиеся капилляры. Гранулезные клетки подвергаются лютеинизации: в них увеличивается объем цитоплазмы и появляются липидные включения - образуется желтое тело.

Желтое тело - транзиторное гормонально-активное образование, которое вне зависимости от продолжительности менструального цикла функционирует в течение 14 дней. Если беременность не наступает, то желтое тело регрессирует, если же происходит оплодотворение, то оно прогрессирует и достигает своего апогея.

Рост, созревание фолликула и образование желтого тела сопровождаются продуцированием половых гормонов как гранулезными клетками фолликула, так и тека-клетками.

К половым стероидным гормонам яичника относятся эстрогены, прогестерон и андрогены. 90% этих гормонов находится в связанном состоянии, оставшиеся 10% дают биологический эффект.

Эстрогены подразделяются на три фракции различной активности: эстрадиол, эстриол, эстрон. Наиболее активен эстрадиол, наименее - эстрон. Количество половых гормонов меняется на протяжении менструального цикла, что определяется активностью гранулезных клеток. По мере роста фолликула увеличивается синтез всех половых гомонов, но преимущественно эстрогенов. В период от овуляции до начала менструации к эстрогенам присоединяется прогестерон, выделяемый клетками желтого тела. Андрогены выделяются в яичнике межуточными клетками и тека-клетками, их уровень на протяжении менструального цикла не меняется.

Таким образом, в фазу созревания фолликула происходит преимущественно секреция эстрогенов (рис. 3.3), в фазу образования желтого тела -прогестерона. Половые гормоны, синтезируемые яичниками, влияют на ткани- и органы-мишени, содержащие рецепторы к ним: это половые органы (матка, молочные железы), губчатое вещество костей, мозг, эндотелий и гладкие мышечные клетки сосудов, миокард, кожа и ее придатки (волосяные фолликулы и сальные железы) и др.

Рис. 3.3. Регуляция репродуктивной функции женщины (схема).РГЛГ - рилизинг-гормоны; ТТГ - тиреотропный гормон; АКТГ - адренокортикотропный гормон; ФСГ - фолликулостимулирующий гормон; ЛГ - лютеинизирующий гормон; Прл - пролактин; П - прогестерон; Э - эстрогены; А - андрогены; Р - релаксин; И - ингибин

Все половые гормоны не только определяют функциональные изменения в самой репродуктивной системе. Они активно влияют на обменные процессы в других органах и тканях, имеющих рецепторы к половым стероидам (половые органы, матка, молочные железы, мозг, губчатое вещество костей, эндотелий). Эти рецепторы могут быть как цитоплазменными (цитозоль-рецепторы), так и ядерными. Цитоплазменные рецепторы строго специфичны к эстрогенам, прогестерону и тестостерону. Стероиды проникают в клетку-мишень, связываясь со специфическими рецепторами -

соответственно с эстрогенами, прогестероном, тестостероном. Гормон-рецептор поступает в ядро, где он связывается с хроматином и через ДНК и РНК начинается синтез белков. Ядерные рецепторы могут быть акцепторами не только стероидных гормонов, но и аминопептидов, инсулина и глюкагона.

В коже под влиянием эстрадиола и тестостерона активируется синтез коллагена, что способствует поддержанию ее эластичности. Повышенная сальность, акне, фолликулиты, пористость и избыточное оволосение ассоциируются с усилением воздействия андрогенов.

В костях эстрогены, прогестерон и андрогены поддерживают нормальное ремоделирование, предупреждая костную резорбцию.

Баланс эстрогенов и андрогенов предопределяет как активность метаболизма, так и распределение жировой ткани в организме.

Половые стероиды (прогестерон) заметно модулируют работу гипоталамического центра терморегуляции.

С рецепторами к половым стероидам в ЦНС, в структурах гиппокампа, регулирующих эмоциональную сферу, а также в центрах, контролирующих вегетативные функции, связывают феномен "менструальной волны" в дни, предшествующие менструации. Этот феномен проявляется разбалансировкой процессов активации и торможения в коре мозга, колебаниями тонуса симпатической и парасимпатической систем (особенно заметно влияющих на функционирование сердечно-сосудистой системы), а внешне проявляется изменением настроения и некоторой раздражительностью. У здоровых женщин эти изменения, однако, не выходят за физиологические границы.

Помимо стероидных гормонов, яичники выделяют и другие биологически активные соединения: простагландины, окситоцин, вазопрессин, релаксин, эпидермальный фактор роста (ЭФР), инсулиноподобные факторы роста (ИПФР-1 и ИПФР-2).

Полагают, что факторы роста способствуют пролиферации клеток гранулезы, росту и созреванию фолликула, селекции доминирующего фолликула.

ЦИКЛИЧЕСКИЕ ИЗМЕНЕНИЯ В СЛИЗИСТОЙ ОБОЛОЧКЕ МАТКИ (ЭНДОМЕТРИИ). ПОДГОТОВКА К БЕРЕМЕННОСТИ

Слизистая оболочка матки во время менструации отторгается и впоследствии под влиянием эстрогенов проходит фазу пролиферации и под преимущественным воздействием прогестерона - фазу секреции . После отторжения функционального слоя эндометрия во время менструации тело матки изнутри покрыто тонким базальным слоем (1-2 мм). Железы узкие, прямые, короткие, выстланы низким цилиндрическим эпителием. Клетки функционального слоя образуются из клеток базального. Эти изменения осуществляются как в железах, так в строме функционального слоя эндометрия. В фазу пролиферации под влиянием эстрогенов увеличивается высота эпителиальных клеток, эпителий из однорядного в начале пролиферации превращается к моменту овуляции в многорядный. Железы удлиняются и становятся извитыми. Возрастает число митозов. Строма слизистой оболочки становится отечной и разрыхляется, в ней увеличиваются ядра клеток и объем цитоплазмы. Толщина эндометрии достигает 8 мм. Продолжительность фазы секреции 12-14 дней. Эндометрий способен не только воспринимать влияние эстрогенов, но и синтезировать их путем превращения андростендиона и тестостерона с участием ароматазы. Подобный локальный путь образования эстрогенов усиливает их воздействие на пролиферативный процесс.

В фазу секреции число рецепторов к эстрогенам в эндометрии снижается и пролиферация клеток эндометрия тормозится. Под влиянием прогестерона в клетках эндометрия появляются гликогенсодержащие вакуоли, в железах появляется секрет, который содержит гликоген, гликопротеиды, гликозамингликаны. В фазу секреции в функциональном слое определяется два слоя клеток: поверхностный, более компактный, и спонгиозный, имеющий губчатое строение.

На 6-7-й день после овуляции (20-21-й день менструального цикла) имеются наилучшие условия для имплантации оплодотворенной яйцеклетки. С 21-го дня менструального цикла наблюдается децидуальная реакция стромы эндометрия, напоминающая таковую при беременности. К 26-му дню децидуальная реакция (скопление клеток, богатых гликогеном) становится максимальной. Полагают, что эти клетки играют большую роль в инвазии трофобласта. Спиральные артерии в этот период менструального цикла значительно извиты. Приблизительно за 2 дня до менструации в строме эндометрия происходит скопление нейтрофилов, мигрирующих из кровяного русла.

Если оплодотворение не происходит, наступает инволюция желтого тела. Содержание в крови как эстрогенов, так и прогестерона падает, что способствует менструации.

Менструация. Под влиянием снижения содержания в крови половых гормонов возникают спазм спиральных артерий, ишемия и некроз, эндометрия. В результате недостаточного снабжения кровью эндометрия высвобождаются лизосомные протеазы, вновь наступает расширение сосудов, что приводит к отторжению некротизированной ткани функционального слоя с нарушением целостности стенок сосудов - менструации.

В наступлении менструации большую роль играют простагландины. Простагландин F2a оказывает сосудосуживающее действие на спиральные артерии, приводящее к ишемии эндометрия. Кроме того, простагландин F2a способствует сокращению миометрия, а следовательно, удалению отторгнутой слизистой оболочки матки. Увеличение выделения простагландинов во время менструации связывают с выделением лизосомами некоторых ферментов.

С самого начала менструации происходит регенерация клеточного состава эндометрия из базальных клеток, которая завершается к 4-5-му дню менструального цикла. Параллельно восстанавливается целостность разрушенных артериол, вен, капилляров.

Эндометрий способен синтезировать не только эстрогены, но пролактин.

Двухфазные изменения в яичниках, матке и во всем организме женщины определяются системой, регулирующей репродуктивную функцию организма.

РЕГУЛЯЦИЯ РЕПРОДУКТИВНОЙ ФУНКЦИИ

Регуляция репродуктивной функцииопределяется взаимодействием с нейроэндокринной системой, включающей в себя центральные (интегрирующие) отделы, промежуточные звенья и периферические, эффекторные структуры. Взаимосвязь желез внутренней секреции, входящих в систему регуляции репродуктивной функции, и органов-мишеней определяется прежде всего специфическими рецепторами. Рецепторы располагаются на цитоплазматической мембране и затем поступают в ядро клетки, связываясь с ДНК. Ядро гормонально зависимой клетки является акцептором не только гормонов, но и аминопептидов, инсулина, глюкагона и др. ДНК после связи с гормонами оказывает специфическое действие на метаболизм.

В регуляции репродуктивной системы выделяют пять уровней, которые действуют по принципу прямой и обратной связи благодаря наличию во всех звеньях цепи рецепторов к половым и гонадотропным гормонам.

Первым (высшим) уровнем регуляции репродуктивной системы являются кора головного мозга, гипоталамус и экстрагипоталамические церебральные структуры, лимбическая система, гиппокамп, миндалевидное тело.

О роли ЦНС в регуляции менструального цикла было известно до выделения гормонов и нейросекретов. Наблюдали прекращение менструаций при стрессах, при очень большом желании иметь беременность или при боязни забеременеть у женщин с неустойчивой психикой. В настоящее время в коре головного мозга, в гипоталамусе и экстрагипоталамических структурах выявлены специфические рецепторы к половым гормонам. Кроме того, в ответ на внешние и внутренние раздражители в коре и подкорковых структурах происходят синтез и выделение нейротрансмиттеров и нейропептидов, которые влияют прежде всего на гипоталамус, способствуя синтезу и выделению рилизинг-гормона.

Корой головного мозга выделяются эндогенные опиодные пептиды (ЭОП): энкефалины, эндорфины и динорфины. Эти субстанции обнаруживаются не только в различных структурах мозга и вегетативной нервной системы, но и в печени, легких, поджелудочной железе и других органах, а также в некоторых биологических жидкостях (плазма крови, содержимое фолликула). По современным представлениям, ЭОП оказывает воздействие на гипоталамус.

К важнейшим нейротрансмиттерам , т.е. веществам-передатчикам, относятся норадреналин, дофамин, гамма-аминомасляная кислота (ГАМК), ацетилхолин, серотонин и мелатонин.

Церебральные нейротрансмиттеры регулируют выработку гонадотропин-рилизинг гормона (ГнРГ): норадреналин, ацетилхолин и ГАМК стимулируют их выброс, а дофамин и серотонин оказывают противоположное действие.

Нейропептиды (эндогенные опоидные пептиды, кортикотропин-рилизинг фактор и галанин) также влияют на функцию гипоталамуса и на сбалансированность функционирования всех звеньев репродуктивной системы.

Вторым уровнем регуляции репродуктивной системы является гипоталамус, в котором секретируются стимулирующие (либерины) и блокирующие (станины) нейрогормоны. Клетки, которые выделяют нейрогормоны (пептидергические нейронные), обладают свойствами как нейронов, так и эндокринных желез.

Гипоталамус секретирует ГнРГ, содержащие фолликулостимулирующий (РГФСГ - фоллиберин) и лютеинизирующий (РГЛГ - люлиберин) гормоны, которые воздействуют на гипофиз.

Рилизинг-гормон ЛГ (РГЛГ - люлиберин) выделен, синтезирован и подробно описан. Выделить и синтезировать рилизинг-фолликулостимулирующий гормон до настоящего времени не удалось. Однако установлено, что декапептид РГЛГ и его синтетические аналоги стимулируют выделение гонадотрофами не только ЛГ, но и ФСГ. В связи с этим принят один термин для гонадоторопных либеринов - гонадотропин-рилизинг гормон (ГнРГ), по сути являющийся синонимом РГЛГ.

Секреция ГнРГ генетически запрограммирована и носит пульсирующий (цирхоральный) характер: пики усиленной секреции гормона продолжительностью несколько минут сменяются 1-3-часовыми интервалами относительно низкой секреторной активности. Частота и амплитуда секреции ГнРГ в преовуляторный период на фоне максимального выделения эстрадиола значительно больше, чем в раннюю фолликулярную и лютеиновую фазы.

Деятельность гипоталамуса тесно связана с функцией гипофиза

К третьему уровню регуляции относится передняя доля гипофиза (аденогипофиз), в котором синтезируются фолликулостимулирующий гормон, или фоллитропин (ФСГ); лютеинезирующий, или лютропин (ЛГ); пролактин (ПрЛ); адренокортикотропный (АКТГ); соматотропный (СТГ); тиреотропный или тиролиберин (ТТГ); ФСГ, ЛГ, ПрЛ воздействуют на яичник. ПрЛ стимулирует рост молочных желез и лактацию, контролирует секрецию прогестерона желтым телом путем активации образования в них рецепторов к ЛГ.

Синтез ПрЛ аденогипофизом находится под тоническим блокирующим контролем дофамина, или пролактинингибирующего фактора. Ингибиция синтеза ПрЛ прекращается во время беременности, лактации. Основным стимулятором синтеза ПрЛ является ТТГ, синтезируемый в гипоталамусе.

Остальные гормоны гипофиза влияют на соответствующие их названию железы внутренней секреции. Только при сбалансированном выделении каждого из гомонов гипофиза возможна нормальная функция репродуктивной системы.

К четвертому уровню регуляции репродуктивной функции относятся периферические эндокринные органы (яичники, надпочечники, щитовидная железа). Основная роль принадлежит яичникам, а другие железы выполняют собственные специфические функции, одновременно поддерживая нормальное функционирование репродуктивной системы.

Пятый уровень регуляции репродуктивной функции составляют чувствительные к колебаниям уровней половых стероидов внутренние и внешние отделы репродуктивной системы (матка, маточные трубы, слизистая оболочка влагалища), а также молочные железы. Наиболее выраженные циклические изменения происходят в эндометрии.

Цикличность системы, регулирующей репродуктивную функцию, определяется прямой и обратной связью между отдельными звеньями. Так, ФСГ, благодаря рецепторам в фолликулярных клетках яичника, стимулирует выработку эстрогенов (прямая связь). Эстрогены, накапливаясь в большом количестве, блокируют выработку ФСГ (обратная связь).

Во взаимодействии звеньев репродуктивной системы различают "длинную", "короткую" и "ультракороткую" петли. "Длинная" петля - воздействие через рецепторы гипоталамо-гипофизарной системы на выработку половых гормонов. "Короткая" петля определяет связь между гипофизом и гипоталамусом, "ультракороткая" петля - связь между гипоталамусом и нервными клетками, которые осуществляют локальную регуляцию с помощью нейротрансмиттеров, нейропептидов, нейромодуляторов и электрических стимулов.

О деятельности репродуктивной системы во время менструального цикла судят по тестам функциональной диагностики: базальной температуре, симптому зрачка, симптому расширения шеечной слизи, морфологическому состоянию эндометрия.

Базальную температуру измеряют в прямой кишке ежедневно утром до вставания с постели. Результаты измерения наносят на график, по которому можно судить о фазности яичниковых изменений. При нормальном овуляторном двухфазном цикле (рис. 3.4) в первую фазу температура ниже 37 °С. Перед овуляцией она несколько снижается, а в период овуляции повышается до 37,6-37,8 о С, а затем в лютеиновую фазу остается субфебрильной. Перед менструацией температура вновь снижается. При наступлении беременности температура в прямой кишке под влиянием прогестерона остается субфебрильной.

Рис. 3.4. Ректальная температура при двухфазном цикле.М - менструация; ОВ - овуляция

Симптом зрачка отражает секрецию слизи железами шейки матки под влиянием эстрогенов. В предовуляторные дни секреция слизи увеличивается, наружное отверстие шеечного канала приоткрывается и при осмотре в зеркалах напоминает зрачок. В соответствии с диаметром видимой в шейке слизи выраженность симптома зрачка определяют плюсами. В период овуляции симптом зрачка составляет +++, затем под влиянием прогестерона ко дню менструального цикла он равен +, а затем исчезает.

Симптом растяжения шеечной слизи связан с ее изменениями под влиянием эстрогенов. Растяжимость слизи определяют с помощью корнцанга. Берут каплю слизи из шеечного канала и, раздвигая бранши, смотрят, на сколько миллиметров растягивается слизь. Максимальное растяжение нити (10-12 мм) происходит в период наибольшей концентрации эстрогенов, соответствующий овуляции (рис. 3.5).

Рис. 3.5. Гормональная регуляция менструального цикла (схема).А - изменение в яичнике; Б - содержание в эндометрии рецепторов к эстра-диолу; В - изменения в эндометрии

Кариопикнотический индекс (КПИ). Под влиянием эстрогенов в слизистой оболочке влагалища, особенно в его верхней трети, происходит ороговение поверхностных клеток, ядра которых становятся пикнотическими. В мазке, взятом из заднего свода влагалища, при микроскопическом исследовании определяют соотношение поверхностных, ороговевающих и промежуточных клеток. Чем больше процент ороговевающих клеток, тем больше в организме эстрогенов. Максимальное число ороговевающих клеток выявляется в предовуляторный период (80-88%), в первые дни после менструации - 20-40%, перед менструацией - 20-25%. Двухфазность изменений во время менструального цикла можно определить при гистологическом исследовании эндометрия . В 1-й день менструации при овуляции и образовании желтого тела в слизистой оболочке матки (цуг-биопсия) видны изменения, соответствующие фазе секреции.

Основной функцией репродуктивной системы является воспроизводство (репродукция) человека. Репродуктивная функция женщин осуществляется, прежде всего, благодаря дея­тельности яичников и матки, так как в яичниках созревает яйцеклетка, а в матке под влиянием гормонов, выделяемых яичниками, происходят изменения по подготовке к восприятию оплодот­воренного плодного яйца.

Яичник — парная женская половая железа.

В яичниках созревает яйцеклетка, а также образуются и выделяются в кровь половые гормоны. Средние размеры яичников у женщины репродуктивного возраста: длина 3-4 см, ширина — 2-2,5 см, толщина 1-1,5 мм. Яичник окружен тонкой капсулой (белочной оболочкой). Под капсулой распо­ложены корковый (наружный) и мозговой (внутренний) слои. В корковом слое содержатся фолли­кулы (пузырьки, содержащие яйцеклетку), разной степени зрелости — от незрелых первичных (примордиальных) фолликулов, до зрелых преовуляторных фолликулов. Овулировавшие (лопнувшие) фолликулы, из которых вышла яйцеклетка, преобразуются в желтые тела. Мозговой слой яичников состоит из соединительной ткани, содержащей сосуды и нервы.

Матка — орган репродуктивной системы женщины, предназначенный, главным образом, для внутриутробного развития эмбриона, вынашивания плода и рождения ребенка.

Помимо репродуктивной функции, матка поддерживает естественное физиологическое равно­весие и гистерэктомия (удаление матки) влечет за собой развитие так называемого постгистерэкто- мического синдрома, негативно сказывающегося на качестве жизни и Матка — полый мышечный орган, имеющий грушевидную форму тазу между прямой кишкой и мочевым пузырем. Ее длина у нерожавшей > 7-8 см, у рожавшей — 8-9,5 см.

В матке различают:

  • Верхний уплощенный отдел — дно матки
  • Средний отдел — тело матки
  • Нижний суженный отдел — шейку матки

Полость матки имеет треугольную форму. В углах основания этого треугольника, совпадающего с дном матки, открываются маточные трубы. Вершина треугольника полости матки обращена вниз и переходит в канал шейки матки (цервикальный канал).

Матка занимает в полости малого таза не вертикальное положение, в результате чего ее тело наклонено над передней поверхностью мочевого пузыря. Реже тело матки отклонено кзади.

Стенка матки образована тремя слоями:

Внутренний слой — слизистая или эндометрий (эндо – внутри, метра – матка греч.)

Средний слой, состоящий из мышц – миометрий (мио – мышца, метра — матка)

Наружный слой, покрывает матку в виде тонкой прозрачной пленки – периметрий (пери — вокруг, метра — матка)

Возрастные периоды жизни женщины

Внутриутробное развитие

Период новорожденности и детства (от рождения до 9 лет)

Препубертатный (от 9 лет до первой менструации)

Пубертатный или ювенильный (от первой менструации до 18 лет)

Репродуктивный период (с 18 до 45-49 лет)

— Ранний (с 18 до 35 лет)

— Поздний (с 36 до 45-49 лет)

Зигота постепенно спускается по маточной трубе в полость матки. В этот период, в тече­ние примерно трех дней, она проходит стадию клеточного деления — дробление. Через три- четыре дня после оплодотворения, дробление заканчивается, и зародыш или эмбрион назы­вают бластоцистой.

На 6-7 день начинается процесс – зародыш прикрепляется к эндометрию и менее чем за двое суток погружается в него полностью. С имплантацией эмбриона прекращается менструальный цикл. Эндометрий становится материнской децидуальной, т.е. отпадающей, оболочкой плодного яйца. Отпадающей она называется потому, что после рождения ребенка она отслаивается и отпадает от стенки матки и все, что было связано с беременностью – , рождается в виде так называемого последа. Роды заканчиваются отслойкой функционального слоя эндометрия – «менструацией» с запозданием на 9 месяцев. Во время беременности децидуальная оболочка играет чрезвычайно важную роль. Через нее к плаценте поступает все необходимое для развития плода.

Таким образом, все функции репродуктивной системы женщины бесперебойно работают на протяжении всей жизни, обеспечивая самую важную задачу: рождение здорового ребенка.

При сбое работы этой многоуровневой сложной системы возникают различные нарушения, имеющие диапазон от незначительных изменений менструального цикла и до .