Потенциальная энергия зависит. Дополнительные вопросы и задания. Потенциальная энергия гравитационного взаимодействия

Для приведения любого тела в движение обязательным условием является произведение работы . При этом, для выполнения данной работы необходимо израсходовать некоторую энергию.

Энергия характеризует тело с точки зрения возможности производить работу. Единицей измерения энергии является Джоуль , сокращенно [Дж].

Полная энергия любой механической системы эквивалентна суммарному значению потенциальной и кинетической энергии. Поэтому, принято выделять потенциальную и кинетическую энергию в качестве разновидностей механической энергии.

Если речь ведется о биомеханических системах, то полная энергия таких систем состоит дополнительно из тепловой и энергии обменных процессов.

В изолированных системах тел, когда на них действуют лишь сила тяжести и упругости, величина полной энергии неизменна. Это утверждение является законом сохранения энергии.

Что же из себя представляет и тот, и другой вид механической энергии?

О потенциальной энергии

Потенциальная энергия это энергия, определяемая взаимным положением тел, либо составляющих этих тел, взаимодействующих друг с другом. Иными словами, эта энергия определяется величиной расстояния между телами .

К примеру, когда тело падает вниз и приводит в движение окружающие тела на пути падения, сила тяжести производит положительную работу. И, наоборот, в случае поднятия тела вверх, можно говорить о производстве отрицательной работы.

Следовательно, каждое тело при нахождении на определенном расстоянии от земной поверхности обладает потенциальной энергией. Чем больше высота и масса тела, тем больше значение работы, совершаемой телом. В то же время, в первом примере, при падении тела вниз, потенциальная энергия будет отрицательной, а при поднятии потенциальная энергия положительна.

Это объясняется равенством работы силы тяжести по значению, но противоположностью по знаку изменению потенциальной энергии.

Также примером возникновения энергии взаимодействия может служить предмет, подверженный упругой деформации — сжатая пружинка : при распрямлении ей будет производиться работа силы упругости. Здесь речь идет о совершении работы вследствие изменения расположения составляющих тела относительно друг друга при упругой деформации.

Подытожив информацию, отметим, что абсолютно каждый предмет, на который воздействует сила тяжести или сила упругости, будет обладать энергией разницы потенциалов.

О кинетической энергии

Кинетической является энергия, которой начинают обладать тела вследствие совершения процесса движения . Исходя из этого, кинетическая энергия тел, находящихся в покое, равняется нулю.

Величина данной энергии эквивалентна величине работы, которую нужно совершить для выведения тела из состояния покоя и заставить его, тем самым, двигаться. Иными словами, кинетическую энергию можно выразить как разницу между полной энергией и энергией покоя.

Работа поступательного движения, которую производит движущееся тело, напрямую зависит от массы и скорости в квадрате. Работа вращательного движения зависит от момента инерции и квадрата угловой скорости.

Полная энергия движущихся тел включает в себя оба вида производимой работы, ее определяют, согласно следующему выражению: . Основные характеристики кинетической энергии:

  • Аддитивность – определяет кинетическую энергию как энергию системы, состоящую из совокупности материальных точек, и равную суммарной кинетической энергии каждой точки этой системы;
  • Инвариантность относительно поворота системы отсчета — кинетическая энергия независима от положения и направления скорости точки;
  • Сохранение – характеристика указывает, что кинетическая энергия систем неизменна при любых взаимодействиях, в случаях изменения только механической характеристики.

Примеры тел, обладающих потенциальной и кинетической энергией

Все предметы, поднятые и находящиеся на некотором расстоянии от земной поверхности в неподвижном состоянии, способны обладать потенциальной энергией. Как пример, это бетонная плита, поднятая краном , которая находится в неподвижном состоянии, взведенная пружина.

Кинетическую энергию имеют движущиеся транспортные средства, а также, в целом, любой катящийся предмет.

При этом, в природе, бытовых вопросах и в технике потенциальная энергия способна переходить в кинетическую, а кинетическая, в свою очередь, наоборот, в потенциальную энергию.

Мяч , который бросают с некоторой точки на высоте: в самом верхнем положении потенциальная энергия мячика максимальна, а значение кинетической энергии равно нулю, поскольку мяч не движется и пребывает в состоянии покоя. При снижении высоты потенциальная энергия соответственно постепенно уменьшается. Когда мячик достигнет земной поверхности, то он покатится; в данный момент кинетическая энергия увеличивается, а потенциальная будет равна нулю.

Некоторые тела могут обладать в одно и то же время обоими разновидностями механической энергии. В качестве примера приведем воду, которая падает вниз с плотины, маятники, летящие стрелы.

Вывод — чем отличается кинетическая энергия от потенциальной?

Подводя итог, отметим, что и та, и другая энергия являются разновидностями механической энергии . Главное их отличие: потенциальной энергией является энергия взаимодействующих тел, находящихся на расстоянии, а кинетическая представляет собой энергию движения данных тел.

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где s - 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

Обозначающего «действие». Можно назвать энергичным человека, который двигается, создает определенную работу, может творить, действовать. Также энергией обладают машины, созданные людьми, живая и природа. Но это в обычной жизни. Помимо этого, есть строгая , определившая и обозначившая многие виды энергии – электрическую, магнитную, атомную и пр. Однако сейчас речь пойдет о потенциальной энергии, которую нельзя рассматривать в отрыве от кинетической.

Кинетическая энергия

Этой энергией, согласно представлениям механики обладают все тела, которые взаимодействуют друг с другом. И в данном случае речь идет о движении тел.

Потенциальная энергия

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения . Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии :

Потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

Кинетическая поступательного движения;

Кинетическая вращательного движения;

Потенциальная деформации элементов системы;

Тепловая;

Обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела .

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m g h

Где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Теперь, когда определены особенности работы отдельных видов сил, вернемся к задаче о движении и свойствах систем материальных тел. Рассмотрим системы тел, в которых действуют только

консервативные силы (тяжести, упругости и всемирного тяготения). Примерами таких систем могут быть:

1) система, состоящая из Земли и тела которое поднято над ней на высоту и удерживается на этой высоте;

2) система, состоящая из груза и пружины жесткостью растянутой на величину

3) система из любого количества тел, между которыми действуют силы всемирного тяготения.

В этих системах силы тяжести, упругости и всемирного тяготения являются внутренними силами. Если телам таких систем предоставить возможность двигаться под действием внутренних сил, то эти силы будут совершать работу, которую мы рассчитали раньше.

Например, в первой системе при падении тела на Землю сила тяжести совершит работу

Во второй системе при движении груза до положения равновесия сила упругости совершит работу

В третьей системе силы всемирного тяготения при переносе одного из тел из бесконечности на заданное расстояние совершат работу

Эта возможная работа внутренний сил полностью определяется заданным расположением тел. Поэтому мы можем утверждать, что каждому заданному расположению тел системы соответствует определенный запас работы, которую могут совершить внутренние силы при освобождении тел системы. Этот запас работы можно рассматривать как новую величину, которая характеризует состояние системы тел: запас работы, которую могут совершить внутренние силы при освобождении тел системы, называется потенциальной энергией этой системы.

Отметим, что о потенциальной энергии можно говорить только тогда, когда работа внутренних сил системы не зависит от формы траектории, по которой движутся тела системы.

По определению в первом примере потенциальную энергию системы нужно считать равной

Ее часто называют потенциальной энергией тела, поднятого над поверхностью Земли.

Употребляя этот термин, нужно помнить, что речь идет о потенциальной энергии системы тело - Земля, а не о потенциальной энергии отдельно взятого тела. Эта энергия обращается в нуль при Во втором примере потенциальная энергия растянутой пружины равна

Нуль энергии соответствует положению равновесия системы.

Особо отметим, что при определении потенциальной энергии системы можно выбирать начало отсчета энергии по своему усмотрению в зависимости от условий задачи.

Рассмотрим пример. Мальчик, находящийся на балконе (рис. 5.27), держит мяч массы на высоте над перилами балкона. При этом мяч оказывается на высоте от пола балкона и на высоте от поверхности Земли. Если рассматривать падение мяча только до перил балкона, то потенциальная энергия мяча относительно уровня перил равна

При этом считается, что потенциальная энергия мяча обратится в нуль, когда он коснется перил балкона.

При падении мяча на пол балкона можно говорить о его потенциальной энергии относительно пола. Она равна

В этом случае нуль потенциальной энергии соответствует уровню пола балкона.

Точно так же при расчете падения мяча на Землю его потенциальная энергия считается равной

Потенциальная энергия в этом случае принимается равной нулю на поверхности Земли.

Итак, при решении любой задачи необходимо сначала уговориться о том, от какого уровня будет отсчитываться потенциальная энергия системы тел. Для растянутых или сжатых пружин обычно считается, что потенциальная энергия системы равна нулю, когда пружины не деформированы.