По какой формуле определяется релятивистский импульс тела. Основные формулы релятивистской механики. Задачи для самостоятельного решения

Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.

В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него - к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения - модификацией второго закона Ньютона для теории относительности.

Релятивистская энергия

Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности - это знаменитая формула Эйнштейна:

Здесь - энергия тела, - скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1) , называется энергией покоя .

Формула (1) утверждает, что каждое тело само по себе обладает энергией - просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия

Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг . Это девять миллионов тонн!

Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.

Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.

Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на

Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:

Увеличение массы воды будет равно:

Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.

Формула ( 1 ) даёт энергию покоящегося тела. Что изменится, если тело движется?

Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1 ). Оказывается, при переходе в систему энергия преобразуется так же, как и время - а именно, энергия тела в системе , в которой тело движется со скоростью , равна:

( 2 )

Формула ( 2 ) была также установлена Эйнштейном. Величина - это полная энергия движущегося тела. Поскольку в данной формуле делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при .

Выражение для полной энергии ( 2 ) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.

1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства

Оно означает, что : скорость массивного тела всегда меньше скорости света.

2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2 ) её числитель обращается в нуль. Но энергия-то фотона ненулевая!

Единственный способ избежать здесь противоречия - это принять, что безмассовая частица обязана двигаться со скоростью света . Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2 ) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.

Интуитивно чувствуется, что полная энергия ( 2 ) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при :

( 3 )
( 4 )

С помощью этих формул последовательно получаем из ( 2 ):

( 5 )

Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:

. ( 6 )

При формула ( 6 ) переходит в нерелятивистское выражение .

Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5 ), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!

Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.

При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!

Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:

Мы видим, что, - масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.

Релятивистский импульс.

Классическое выражение для импульса не годится в теории относительности - оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.

Пусть система движется относительно системы со скоростью (рис. 1 ). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.

В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:

Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:

Правое тело имеет скорость:

Нерелятивистский импульс нашей системы до столкновения равен:

После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:

Как видим, , то есть нерелятивистский импульс не сохраняется.

Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы , двигающегося со скоростью , равен:

Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.

Импульс системы до столкновения:

Импульс после столкновения:

Вот теперь всё правильно: !

Связь энергии и импульса.

Из формул ( 2 ) и ( 7 ) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:

Преобразуем разность:

Это и есть искомое соотношение:

. ( 8 )

Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2 ) и ( 7 ) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8 ) легко находим: , или

( 9 )

В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9 ) находится его импульс.

Релятивистское уравнение движения.

Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике - это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:

. ( 10 )

Теперь заметим, что - изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона - производная импульса тела по времени равна силе, приложенной к телу:

. ( 11 )

Все эти вещи вам знакомы, но повторить никогда не помешает;-)

Классическое уравнение движения - второй закон Ньютона - является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.

То, что второй закон Ньютона ( 10 ) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.

Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11 ), где p - релятивистский импульс:

. ( 12 )

Производная релятивистского импульса по времени равна силе, приложенной к телу.

В теории относительности уравнение ( 12 ) приходит на смену второму закону Ньютона.

Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12 ) получаем:

Остаётся выразить отсюда скорость:

. ( 13 )

Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :

, ( 14 )

. ( 15 )

Формулы ( 14 ) и ( 15 ) отличаются от формул ( 3 ) и ( 4 ) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства - они часто используются в физике.

Итак, начинаем с малых времён движения. Преобразуем выражение ( 13 ) следующим образом:

При малых имеем:

Последовательно пользуясь нашими приближёнными формулами, получим:

Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:

Здесь - ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно - при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.

Теперь переходим к большим временам. Преобразуем формулу ( 13 ) по-другому:

При больших значениях имеем:

Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше - как того и требует теория относительности.

Зависимость скорости тела от времени, даваемая формулой ( 13 ), графически представлена на рис. 2 .

Начальный участок графика - почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .

Лекция 12.

Релятивистская динамика.

Конечность скорости распространения сигналов, что другими словами скорости распространения взаимодействия существенным образом меняет классические законы динамики Ньютона. В релятивистской кинематике требуется учитывать запаздывание приложения сил.

Пример. Предположим, что в системе отсчета, в которой тела покоятся, сила между ними действовала в течение некоторого времени, затем исчезла. В движущейся системе отсчета «выключение» взаимных сил действующих на разные тела произойдет в разные времена. НА основании такого простого умозрительного опыта можно утверждать, что третий закон Ньютона в релятивистской динамике несправедлив.

В действительности все силы в природе имеют локальный характер. Взаимодействие осуществляется через материального агента – поле. Поле, в частности электромагнитное, характеризуется измеримыми величинами – энергией, импульсом и др. В некоторых задачах, например задачах рассеяния частиц, можно пользоваться упрощенной моделью. Частицы до взаимодействия, находясь на бесконечно удаленном расстоянии друг от друга, не взаимодействуют. После рассеяния также будучи бесконечно удаленными частицы не взаимодействуют. Подобная модель будет применена для анализа сохранения импульса при столкновении частиц.

Релятивистский импульс.

Классический закон сохранения в в виде:

несправедлив, т.к в нем отсутствуют ограничения на максимальную скорость частиц.

Будем предполагать, что в релятивистском случае импульс частицы также: , которое совпадает с классическим, за исключением того, что масса частицы может зависеть от скорости. Релятивистский импульс:

(1)

где при . будем называть массой покоя частицы – эта та масса, которая измерена в сопутствующей частице системе отсчета. Таким образом постулируется, что релятивистский импульс является нелинейной функцией скорости.

Поставим мысленный эксперимент. Производятся выстрелы одинаковыми снарядами с одинаковыми в сопутствующих системах отсчета скоростями, перпендикулярно направлению движения поездов. В сопутствующих системах отсчета скорости снарядов равны . Для простоты предполагаем, что скорости снарядов нерелятивистские . Считаем, что поезда движутся в направлении оси неподвижной системы отсчета со скоростями соответственно . Точное значение скоростей каждого поезда несущественно, в дальнейшем следует задать относительную скорость одного поезда в системе другого равной (см. рис n1). Снаряды выстреливаются в направлении осей . Предположим, что в результате столкновения снаряды слипаются. Из соображений симметрии следует, что в неподвижной системе отсчета после столкновения импульс вновь образованного тела равен нулю. Если полный импульс вновь образованного тела в системе нулевой, то в системе поезда 1, движущегося вправо поперечный импульс после столкновения и в силу сохранения и до столкновения также нулевой. Итак, в системе поезда 1, поскольку скорость нерелятивистская, имеем:

. (2)

Здесь соответственно вертикальная и полная скорости снаряда, выпущенного из поезда 2 в системе поезда 1. Поскольку относительная скорость поезда 2 в системе поезда 1 равна , то по закону преобразования поперечной скорости (см. лекц. 10 (12)) получаем:

(3)

Сравнивая (2), (3) находим:

(4)

Если устремить поперечные скорости снарядов к нулю, то полная скорость , и, следовательно:

(5)

Окончательно, релятивистский импульс выражается:

(6)

Закон сохранения импульса в релятивистской динамике будет записываться в виде:

(7)

Релятивистская энергия.

Рассмотрим распад тела массы на осколки масс . В системе покоя начального тела разлет осколков будет происходить в противоположные стороны. Пусть теперь тот же самый распад рассматривается с точки зрения системы отсчета , движущейся с поперечной, относительно скоростей осколков с нерелятивистской скоростью . Тогда, сохранение поперечной компоненты импульса, согласно (7) будет выглядеть следующим образом.

> Релятивистский импульс

Читайте о релятивистском импульсе : формула, инвариантность массы и преобразования Лоренца. Сопоставление физики Ньютона и импульса релятивистской механики.

Релятивистский импульс задается как γm 0 v (m 0 – инвариантная масса объекта, а γ – преобразование Лоренца).

Задача обучения

  • Сопоставить ньютоновские и релятивистские импульсы для объектов, чья скорость меньше или приближается к световой.

Основные пункты

  • В физике Ньютона видно, что абсолютное время и пространство существуют без наблюдателя, то есть, скорость света может меняться в зависимости от системы.
  • В специальной теории относительности формула движения не основывается на системе отсчета, а световая скорость выступает инвариантной.
  • В классической механике релятивистский и ньютоновский импульс примерно одинаковы.

Термины

  • Специальная теория относительности: скорость света остается неизменной во всех системах отсчета.
  • Преобразования Лоренца – связывают координаты пространства и времени одной системы отсчета с другой.
  • Преобразование Галилея – трансформация между координатами двух опорных структур, отличающихся стабильным относительным перемещением.

Релятивистский импульс

В физике Ньютона говорится, что абсолютное время и пространство присутствуют без наблюдателя. Отсюда появилась относительность Галилея, утверждающая, что законы движения будут одинаковыми во всех инерциальных системах. Это также намекает на то, что световая скорость меняется в зависимости от системы. Но это не соответствует наблюдениям.

Создавая специальную теорию относительности, Альберт Эйнштейн основывался на том, что уравнения движения не привязаны к системе отсчета, но скорость света остается инвариантной. В итоге преобразование Галилея сменили на преобразование Лоренца.

Альберт Эйнштейн в 1921 году

Давайте возьмем опорную конструкцию, перемещающуюся относительно другой на скорости v в сторону х. Преобразование Галилея предлагает координаты:

В то время как преобразование Лоренца:

, где γ – коэффициент Лоренца:

Законы сохранения в физике должны быть инвариантными. То есть, нуждающееся в сохранении свойство, обязано оставаться неизменными и не основываться на перемене условий измерения. Второй закон Ньютона не считается инвариантным по отношению к преобразованию Лоренца. Но его можно сделать таким:

m = γm 0 (m0 – инвариантная масса объекта).

Модифицированный импульс р = γm 0 v подчиняется второму закону Ньютона:

Если скорости уступают световой, то ньютоновский и релятивистский импульсы примерно равны. Но с приближением к световой скорости релятивистский будет становиться бесконечным, а ньютоновский продолжит линейно увеличиваться.

Здесь показано, как релятивистский импульс приближается к бесконечности по мере достижения отметки световой скорости. Ньютоновский в это время линейно растет

Уравнения Ньютона инвариантны по отношению к преобразованиям Галилея. Однако к преобразованиям Лоренца они оказываются неинвариантными. В частности, не инвариантен к преобразованиям Лоренца вытекающий из законов Ньютона закон сохранения импульса.

В теории относительности импульс, как и в Ньютоновской механике, равен произведению массы тела на его скорость

(6.5)

Однако в выражении (6.5) масса не является постоянной величиной, а зависит от скорости по закону

. (6.6)

Величина называется массой покоя, это инвариантная величина, массаносит название релятивистской массы. Зависимость релятивистской массы от скорости представлена на рис.6.9.

Продифференцировав выражение (6.5) по времени, получаем релятивистское выражение второго закона Ньютона

Чтобы найти релятивистское выражение для энергии, умножим это уравнение на перемещение частицы
:

Правая часть этого выражения равна работе, совершаемой над частицей за время dt . Как следует из закона сохранения энергии, эта работа равна приращению энергии частицы:

Преобразуем полученное выражение:

Проинтегрировав, имеем

Экспериментально доказано, что константа в этом выражении равна нулю. Тогда полная энергия частицы

(6.7)

Если скорость частицы равна нулю, энергия
Это энергия покоя. Она не связана ни с каким движением частицы. Для произвольного тела энергия покоя равна сумме энергий покоя всех его частиц, кинетических энергий этих частиц в системе центра масс тела и потенциальных энергий взаимодействия этих частиц. В энергию покоя, как и в полную энергию, не входит потенциальная энергия тела в поле внешних сил.

Очевидно, кинетическая энергия равна разности между полной энергией и энергией покоя частицы:

В случае малых скоростей
эта формула преобразовывается к виду:

Мы получили классическое выражение для кинетической энергии частицы.

Решив совместно уравнения (6.5), (6.6) и (6.7), получаем:

. (6.8)

При
имеем:

Это выражение отличается от классического выражения для кинетической энергии слагаемым
.

Из выражения (6.7) следует еще одна формула для энергии:
. Тогда импульс частицы

Получим еще одну формулу для энергии. Из замедления времени получаем

где
- промежуток времени между двумя происходящими с частицей событиями, отсчитанный по часам в той системе отсчета, в которой частица движется,
- тот же промежуток времени, отсчитанный по часам, движущимся вместе с частицей. Подставив это выражение в формулу (6.7), имеем

(6.9)

Получим теперь преобразования импульса и энергии. Из (6.8) следует

(6.10)

Масса является инвариантом, следовательно, и выражение (6.10) представляет собой инвариант, т.е. имеет одинаковую величину во всех инерциальных системах отсчета. Сами по себе величиныE и не являются инвариантами, так как они зависят от скорости, которая меняется при переходе из одной системы отсчета в другую.

Будем считать, что частица движется параллельно оси x , в системе
скорость частицы равна. Тогда согласно релятивистской теореме сложения скоростей скорость в системеX равна

(6.11)

Здесь - скорость, с которой система
движется относительно системыX . Энергию в системе X выразим через . Для этого вычислим выражение
:

Тогда энергия

Полученная формула справедлива при любой взаимной ориентации векторов и. Это означает, что в преобразованиях участвует только компонента импульса. Так как
, выражение для импульса принимает вид=
.

Подставим в него из (6.11), имеем


Теперь будем считать, что в системе
частица движется параллельно осии, следовательно,
. В системеX компонента скорости частицы по оси x равна , так что
. Соответственно,
Так как
, то из преобразований Лоренца для скоростей
, и

Аналогичный результат получается для компоненты . Тогда преобразования для энергии и импульса принимают вид:

Эти формулы совпадают с формулами (6.2) преобразования координат и времени.

По аналогии с трехмерными векторами в евклидовом пространстве можно определить четырехмерные векторы. Под четырехмерным вектором понимают совокупность четырех величин
преобразующихся по тем же формулам, что иct , x ,y , z . Квадрат такого вектора равен
. Вследствие того, что компоненты преобразуются так же, как координаты, квадрат четырехмерного вектора оказывается инвариантным по отношению к преобразованиям Лоренца. Тогда совокупность величин
образует четырехмерный вектор, называемый вектором энергии-импульса. Квадрат этого вектора является инвариантом и равен

Зависимость релятивистского импульса от скорости представлена на рис.6.10. При малых скоростях релятивистский импульс совпадает с классическим.

Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX в. на опытах с электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением v по закону

где - масса покоя , т.е. масса материальной точки, измеренная в той инерциальной системе отсчета, относительно которой точка покоится; m - масса точки в системе отсчета, относительно которой она движется со скоростью v .

оказывается инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная от релятивистского импульса :

(5.9)

(5.11)

Из приведенных формул следует, что при скоростях, значительно меньших скорости света в вакууме, они переходят в формулы классической механики. Следовательно, условием применимости законов классической механики является условие . Законы Ньютона получаются как следствие СТО для предельного случая . Таким образом, классическая механика - это механика макротел, движущихся с малыми (по сравнению со скоростью света в вакууме) скоростями.

Вследствие однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса : релятивистский импульс замкнутой системы тел сохраняется, т.е. не изменяется с течением времени.

Изменение скорости тела в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии, т.е. между массой и энергией существует взаимосвязь. Эту универсальную зависимость - закон взаимосвязи массы и энергии - установил А. Эйнштейн:

(5.13)

Из (5.13) следует, что любой массе (движущейся m или покоящейся ) соответствует определенное значение энергии. Если тело находится в состоянии покоя, то его энергия покоя

Энергия покоя является внутренней энергией тела , которая складывается из кинетических энергий всех частиц, потенциальной энергии их взаимодействия и суммы энергий покоя всех частиц.

В релятивистской механике не справедлив закон сохранения массы покоя. Именно на этом представлении основано объяснение дефекта массы ядра и ядерных реакций.

В СТО выполняется закон сохранения релятивистской массы и энергии : изменение полной энергии тела (или системы) сопровождается эквивалентным изменением его массы:

Таким образом, масса тела, которая в классической механике является мерой инертности или гравитации, в релятивистской механике является еще и мерой энергосодержания тела.


Физический смысл выражения (5.14) состоит в том, что существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии.

Классическим примером этого является аннигиляция электрон-позитронной пары и, наоборот, образование пары электрон-позитрон из квантов электромагнитного излучения:

В релятивистской динамике значение кинетической энергии Е к определяется как разность энергий движущегося Е и покоящегося Е 0 тела:

(5.15)

При уравнение (5.15) переходит в классическое выражение

Из формул (5.13) и (5.11) найдем релятивистское соотношение между полной энергией и импульсом тела:

(5.16)

Закон взаимосвязи массы и энергии полностью подтвержден экспериментами по выделению энергии при протекании ядерных реакций. Он широко используется для расчета энергического эффекта при ядерных реакциях и превращениях элементарных частиц.

Краткие выводы:

Специальная теория относительности - это новое учение о пространстве и времени, пришедшее на смену классическим представлениям. В основе СТО лежит положение, согласно которому никакая энергия, никакой сигнал не может распространяться со скоростью, превышающей скорость света в вакууме. При этом скорость света в вакууме постоянна и не зависит от направления распространения. Это положение принято формулировать в виде двух постулатов Эйнштейна - принципа относительности и принципа постоянства скорости света.

Область применения законов классической механики ограничена скоростью движения материального объекта: если скорость тела соизмерима со скоростью света, то необходимо использовать релятивистские формулы. Таким образом, скорость света в вакууме является критерием, определяющим границу применимости классических законов, т.к. она является максимальной скоростью передачи сигналов.

Зависимость массы движущегося тела от скорости движения определяется соотношением

Релятивистский импульс тела и соответственно уравнение динамики его движения

Изменение скорости в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии:

В СТО выполняется закон сохранения релятивистской массы и энергии: изменение полной энергии тела сопровождается эквивалентным изменением ее массы:

Физический смысл этого соотношения заключается в следующем: существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии. Это соотношение является важнейшим для ядерной физики и физики элементарных частиц.

Вопросы для самоконтроля и повторения

1. В чем заключается физическая сущность механического принципа относительности? Чем отличается принцип относительности Галилея от принципа относительности Эйнштейна?

2. Каковы причины создания специальной теории относительности?

3. Сформулируйте постулаты специальной теории относительности.

4. Запишите преобразования Лоренца. При каких условиях они переходят в преобразования Галилея?

5. В чем заключается релятивистский закон сложения скоростей?

6. Как в релятивистской механике масса движущегося тела зависит от скорости?

7. Запишите основное уравнение релятивистской динамики. Чем оно отличается от основного закона ньютоновской механики?

8. В чем заключается закон сохранения релятивистского импульса?

9. Как выражается кинетическая энергия в релятивистской механике?

10. Сформулируйте закон взаимосвязи массы и энергии. В чем его физическая сущность?с . Определить его релятивистский импульс и кинетическую энергию .

Дано: кг; v =0,7c ; с =3· 10 8 м/с.

Найти: р, E k .

Релятивистский импульс протона вычислим по формуле

Кинетическая энергия частицы

где Е - полная энергия движущегося протона; Е 0 - энергия покоя.

Ответ: р = 5,68·10 -19 Н·с; E k = 7,69·10 -11 Дж.

Задачи для самостоятельного решения

1. С какой скоростью должен двигаться стержень, чтобы размеры его в направлении движения сократились в три раза?

2. Частица движется со скоростью v = 8 c . Определить отношение полной энергии релятивистской частицы к ее энергии покоя.

3. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в три раза.

4. Определить релятивистский импульс электрона, кинетическая энергия которого E k = 1 ГэВ.

5. На сколько процентов увеличится масса электрона после прохождения им в ускоряющем электрическом поле разности потенциалов 1,5 МВ?