Можно ли верить узи. УЗИ щитовидной железы — можно ли верить? Зачем нужно проходить дополнительную диагностику. Чтобы все были счастливы

Мухи живут меньше, чем слоны. В этом нет никаких сомнений. Но, с точки зрения мух, действительно ли их жизнь представляется им гораздо короче? Таким, по сути, был вопрос, который поставил Кевин Гили из Тринити-колледжа в Дублине в своей статье, только что опубликованной в Animal Behaviour. Его ответ: очевидно, нет. Эти небольшие существа мухи с быстрым метаболизмом видят мир в замедленном режиме. Субъективное переживание времени является по сути лишь субъективным. Даже отдельные люди, которые могут обмениваться впечатлениями, разговаривая друг с другом, не могут знать наверняка, совпадает ли их собственный опыт с опытом других людей.

Мухи — зрение мухи и почему ее трудно убить

Но объективный показатель, который, вероятно, коррелирует с субъективным переживанием, все-таки существует. Он называется критической частотой слияния мерцание CFF — critical flicker-fusion frequency, и является самой низкой частотой, при которой мерцающий свет выдается постоянным источником освещения. Он измеряет то, как быстро глаза животных могут обновлять изображения и таким образом обрабатывать информацию.

Для людей средней критической частотой мерцания является 60 герц (то есть 60 раз в секунду). Именно поэтому частота обновления изображения на телевизионном экране, как правило, установлена на этом значении. Псы имеют критическую частоту мерцания в 80 Гц, и поэтому, наверное, кажется, что им не нравится смотреть телевизор. Для собаки телепрограмма выглядит как множество фотокадров, которые быстро меняют собой друг друга.

Высшая критическая частота мерцания должна означать биологические преимущества, поскольку она позволяет быстрее реагировать на угрозы и возможности. Мух, имеющих критическую частоту мерцания в 250 Гц, как известно, трудно прибить. Свернутая газета, которая, как представляется человеку, движется во время удара быстро, мухам кажется такой, будто она движется в мелассе.

Ученый Кевин Гили предположил, что основными факторами, ограничивающими критическую частоту мерцания у животного, является ее размеры и скорость обмена веществ. Небольшой размер означает, что сигналы в мозг проходят меньшее расстояние. Высокая скорость обмена веществ означает, что для их обработки доступно больше энергии. Поиск в литературе, однако, показал, что никто раньше не интересовался этим вопросом.

К счастью, для Гили, этот самый поиск также показал, что многие люди изучали критическую частоту мерцания у большого количества видов по другим причинам. Многие ученые так же изучали скорости обмена веществ у многих тех же видов. Зато данные о размерах видов общеизвестны. Таким образом, все, что ему нужно было сделать — это построить корреляции и применить с пользой для себя результаты других исследований. Что он и сделал.

Для облегчения задачи к своему исследованию ученый взял данные, касающиеся только позвоночных животных — 34 видов. На нижнем конце шкалы оказался европейский угорь, с критической частотой мерцания в 14 Гц. За ним сразу идет кожистая черепаха, с критической частотой мерцания в 15 Гц. Рептилии вида туатара (гаттерия) имеют CFF в 46 Гц. Акулы-молоты вместе с людьми имеют CFF в 60 Гц, а желтоперые птицы, как и псы, имеют CFF в 80 Гц.

Первое место занял суслик золотистый, с CFF в 120 Гц. И когда Гили построил графики зависимости CFF от размера животного и скорости обмена веществ (которые не являются, что нужно признать, независимыми переменными, поскольку у малых животных, как правило, скорость обмена веществ выше, чем у крупных), он нашел именно те корреляции, которые он и предсказал.

Получается, что его гипотеза — что эволюция заставляет животных видеть мир в как можно более медленном движении — выглядит правильной. Жизнь мухи может показаться людям кратковременной, но с точки зрения самих двукрылых, они могут доживать до глубокой старости. Помните об этом в следующий раз, когда попробуете (неудачно) прибить очередную муху.

Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза . Число зрительных элементов - омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза) – это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза – имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.

Ещё в далёком детстве многие из нас задавались столь пустяковыми, казалось бы, вопросам о насекомых, вроде таких, как: сколько глаз у обыкновенной мухи, почему паук плетёт паутину, а оса может укусить.

Наука энтомология имеет ответы практически на любые из них, но сегодня мы призовём знания исследователей природы и поведения для того, чтобы разобраться с вопросом, что собой являет зрительная система этого вида.

Мы проанализируем в этой статье, как видит муха и почему это назойливое насекомое так трудно прихлопнуть мухобойкой или поймать ладошкой на стене.

Комнатная жительница

Комнатная или домашняя муха относится к семейству настоящих мух. И пусть тема нашего обзора касается всех видов без исключения, мы позволим себе для удобства рассматривать всё семейство на примере именно этого столь хорошо всем знакомого вида домашних нахлебников.

Обыкновенная домашняя муха является весьма непримечательным внешне насекомым. Она имеет серо-чёрную окраску туловища, с некоторыми намёками на желтизну в нижней части брюшка. Длина взрослой особи редко превышает 1 см. Насекомое имеет две пары крыльев и фасеточные глаза.

Фасеточные глаза — в чём суть?

Зрительная система мухи включает в себя два больших глаза, расположенных по краям головы. Каждый из них имеет сложную структуру и состоит из множества мелких шестигранных фасеток, отсюда и название такого типа зрения, как фасеточное.


Всего мушиный глаз имеет в своей структуре более 3,5 тысячи таких микроскопических составляющих. И каждая из них способна улавливать лишь мизерную часть общего изображения, передавая информацию о полученной мини-картинке в мозг, который собирает все пазлы этой картины воедино.

Если сравнивать фасеточное зрение и бинокулярное, которым располагает человек, например, можно быстро убедиться в том, что предназначение и свойства каждого диаметрально противоположны.

Более развитым животным свойственно концентрировать зрение на определённой узкой области или на конкретном объекте. Насекомым же важно не столько видеть конкретный предмет, сколько быстро ориентироваться в пространстве и замечать приближение опасности.

Почему её так сложно поймать?

Этого вредителя действительно очень непросто застать врасплох. Причина не только в повышенной реакции насекомого в сравнении с медлительным человеком и способности срываться с места практически мгновенно. Главным образом, столь высокий уровень реакции обусловлен своевременным восприятием мозга этого насекомого изменений и движений в радиусе обзора его глаз.

Зрение мухи позволяет ей видеть практически на 360 градусов. Такой тип зрения называется ещё панорамным. То есть каждый глаз даёт обзор на 180 градусов. Этого вредителя практически нельзя застать врасплох, даже если подходить к ней сзади. Глаза этого насекомого позволяют контролировать всё пространство вокруг неё, тем самым обеспечивая стопроцентную круговую зрительную оборону.

Есть ещё интересная особенность зрительного восприятия мухой палитры цветов. Ведь почти все виды иначе воспринимают те или иные цвета, привычные нашему глазу. Некоторые из них насекомые не различают вообще, другие выглядят для них иначе, в других тонах.

Кстати, помимо двух фасеточный глаз, у мухи имеются ещё три простых глаза. Они расположены в промежутке между фасеточными, на лобной чисти головы. В отличие от сложных глаз, эти три используются насекомым для распознавания того или иного объекта в непосредственной близости.

Таким образом, на вопрос, сколько все-таки глаз у обыкновенной мухи, можем теперь смело ответить – 5. Два сложных фасеточных, разделённых на тысячи омматидиев (фасеток) и предназначенных для максимально обширного контроля за изменениями окружающей среды вокруг неё, и три простых глаза, позволяющих, что называется, наводить резкость.

Взгляд на мир

Мы уже говорили, что мухи дальтоники, и различают либо не все цвета, либо видят привычные нам предметы в других цветовых тонах. Также этот вид способен различать ультрафиолет.

Следует ещё сказать, что при всей уникальности своего зрения эти вредители практически не видят в темноте. Ночью муха спит, поскольку её глаза не позволяют этому насекомому промышлять в тёмное время суток.

А ещё эти вредители имеют свойство хорошо воспринимать только более мелкие и находящиеся в движении объекты. Насекомое не различает такие большие предметы, как человек, например. Для мухи это не более чем ещё одна часть интерьера окружающей среды.

А вот приближение руки к насекомому его глаза прекрасно улавливают и своевременно дают нужный сигнал мозгу. Так же, как и увидеть любую другую стремительно надвигающуюся опасность не составит труда этим пронырам, благодаря сложной и надёжной системе слежения, которой снабдила их природа.

Заключение

Вот мы и проанализировали, как выглядит мир глазами мухи. Теперь мы знаем, что эти вездесущие вредители обладают, как и все насекомые, удивительным зрительным аппаратом, позволяющим им не терять бдительности, и в светлое время суток держать круговую наблюдательную оборону на все сто.

Зрение обыкновенной мухи напоминает сложную систему слежения, включающую в себя тысячи мини-камер наблюдения, каждая из которых предоставляет насекомому своевременную информацию о том, что происходит в ближайшем диапазоне.

Наиболее сложными из органов чувств у насекомых являются органы зрения. Последние представлены образованиями нескольких типов, из которых важнейшие - сложные фасетированные глаза примерно такого же строения, как и сложные глаза ракообразных .

Глаза состоят из отдельных омматидиев ( рис. 337), количество которых определяется главным образом биологическими особенностями насекомых. Активные хищники и хорошие летуны, стрекозы обладают глазами, насчитывающими до 28 000 фасеток в каждом. В то же время муравьи (отр. Перепончатокрылые), особенно рабочие особи видов, обитающих под землей, имеют глаза, состоящие из 8 - 9 омматидиев.

Каждый омматидий представляет совершенную фотооптическую сенсиллу ( рис. 338). В его состав входят оптический аппарат, включающий роговицу, - прозрачный участок кутикулы над омматидием и так называемый хрустальный конус. В совокупности они выполняют роль линзы. Воспринимающий аппарат омматидия представлен несколькими (4 - 12) рецепторными клетками; специализация их зашла очень далеко, о чем говорит полная утрата ими жгутиковых структур. Собственно чувствительные части клеток - рабдомеры - представляют скопления плотно упакованных микроворсинок, располагаются в центре омматидия и тесно прилегают друг к другу. В совокупности они образуют светочувствительный элемент глаза - рабдом.

По краям омматидия залегают экранирующие пигментные клетки; последние довольно существенно отличаются у дневных и ночных насекомых. В первом случае пигмент в клетке неподвижен и постоянно разделяет соседние омматидии, не пропуская световые лучи из одного глазка в другой. Во втором случае пигмент способен перемещаться в клетках и скапливаться только в их верхней части. При этом лучи света попадают на чувствительные клетки не одного, а нескольких соседних омматидиев, что заметно (почти на два порядка) повышает общую чувствительность глаза. Естественно, что подобного рода адаптация возникла у сумеречных и ночных насекомых. От чувствительных клеток омматидия отходят нервные окончания образующие зрительный нерв.

Кроме сложных глаз многие насекомые имеют еще и простые глазки ( рис. 339), строение которых не соответствует строению одного омматидия. Светопреломляющий аппарат линзообразной формы, сразу же под ним расположен слой чувствительных клеток. Весь глазок одет чехлом из пигментных клеток. Оптические свойства простых глазков таковы, что воспринимать изображения предметов они не могут.

Личинки насекомых в большинстве случаев обладают только простыми глазками, отличающимися, однако, по строению от простых глазков взрослых стадий. Никакой преемственности между глазками взрослых особей и личинок не существует. Во время метаморфоза глаза личинок полностью резорбируются.

Зрительные способности насекомых совершенны. Однако структурные особенности сложного глаза предопределяют особый физиологический механизм зрения. Животные, имеющие сложные глаза, обладают "мозаичным" зрением. Малые размеры омматидиев и их обособленность друг от друга приводят к тому, что каждая группа чувствительных клеток воспринимает лишь небольшой и сравнительно узкий пучок лучей. Лучи, падающие под значительным углом, поглощаются экранирующими пигментными клетками и не достигают светочувствительных элементов омматидиев. Таким образом, схематично каждый омматидии получает изображение только одной небольшой точки объекта, находящегося в поле зрения всего глаза. Вследствие этого изображение складывается из стольких световых точек, отвечающих различным частям объекта, на сколько фасеток падают перпендикулярно лучи от объекта. Общая картина комбинируется как бы из множества мелких частичных изображений путем приложения их одного к другому.

Восприятие цвета насекомыми также отличается известным своеобразием. Представители высших групп Insecta имеют цветовое зрение, основанное на восприятии трех основных цветов, смешение которых и дает все красочное многообразие окружающего нас мира. Однако у насекомых по сравнению с человеком наблюдается сильный сдвиг в коротковолновую часть спектра: они воспринимают зелено - желтые, синие и ультрафиолетовые лучи. Последние для нас невидимы. Следовательно, цветовое восприятие мира насекомыми резко отличается от нашего.

Функции простых глазков взрослых насекомых требуют еще серьезного изучения. По - видимому, они в какой - то мере "дополняют" сложные глаза, влияя на активность поведения насекомых в разных условиях освещенности. Кроме того, было показано, что простые глазки наряду со сложными глазами способны воспринимать поляризованный свет.