Дробление. Развитие зародыша в период прогестации. Уникальный метод биописии клеток эмбриона

Начальный этап формирования эмбриона - самый сложный процесс, от которого во многом зависит успех всей процедуры. Рассмотрим пошагово образование бластомеров, факторы, влияющие на их развитие, условия отбора материала.

Что такое бластомеры? Это округлые клетки эмбрионов у многоклеточных видов. В результате оплодотворения яйцеклетки сперматозоидом формируется зигота. Две одинаковые клетки - бластомеры, образуются в процессе развития клеточного цикла (он занимает приблизительно 24 часа).

Дальнейшее дробление также естественно: клетки внешней оболочки морулы трансформируются в эпителиальные, что становится толчком к наполнению межклеточного пространства водой, ионами. В результате таких изменений возникает полость - бластоцель. После ее формирования материал, полученный в результате оплодотворения - это бластоциста или бластула.


Дифференцировка бластомеров начинается на стадии, наступающей через 24 часа и далее различается по временным отрезкам и количеству клеток:

  • 2-е сутки - стадия 2-4 бластомеров (реже 6-8). В этот период с высокой точностью можно отобрать эмбрионы, развивающиеся нормально.
  • 3-4-е сутки - стадия 6-8 (реже 8-16) бластомеров. Эмбрион, полученный вследствие оплодотворения, после стадии 12-14 бластомеров становится округлым и с гладкой поверхностью. На этом этапе контакты между клетками укрепляются и бластомер называют морулой. В условиях природного оплодотворения именно в это время материал переносится в матку.
  • 5-е сутки - стадия 16 и более бластомеров. Бластоциста выклевывается из истончившейся оболочки, и наступает стадия имплантации.
  • Бластоциста на 6-й день - полностью освободившаяся из оболочки.

Характеристика дробления и строение бластоцисты человека:

Образование бластомеров: митоз или мейоз? Дробление - поэтапное деление зиготы путем митоза. За короткие отрезки времени между дроблением, роста клеток не происходит, но ДНК удваивается. Клетка уменьшается до нормального размера, образуется шарообразное скопление клеток - морула, а после - бластоциста - полый шарик из бластомеров.

На современном этапе развития методики экстракорпорального оплодотворения можно отобрать хорошо развивающиеся эмбрионы до момента имплантации, что позволяет сделать манипуляцию максимально успешной.

Классификация

Классификация бластоцист сформирована по ряду признаков, чтобы в дальнейшем можно было отобрать наилучший материал. Для удобства дифференциации используют цифровые и буквенные обозначения.

Размер указывают с помощью цифр от 1 до 6 (обозначение стадии экспансии):

  • Полость занимает приблизительно половину бластоцисты (ранняя стадия).
  • Полость - больше половины объема, но при том сама бластоциста незначительно превышает размеры делящегося эмбриона (средняя стадия).
  • Полость - большая часть бластулы. Объем бластоцисты вдвое превышает размеры делящегося эмбриона, оболочка становится тоньше
  • Стадия разрыва оболочки (хэтчинга).
  • Стадия разрыва оболочки после осуществления ПГД (преимплантационной генетической диагностики).
  • Вылупившаяся бластула.

После цифрового обозначения используют буквенные. Первая буква обозначает уровень качества внутриклеточной массы (объема, из которого в будущем развивается эмбрион - ВКМ):

  • А - нормальная по размеру и плотно упакованная масса без включений;
  • В - внутриклеточная масса имеет дефекты при хорошей различимости;
  • С - ВКМ с серьезными дефектами структуры или неразличима;
  • D - дегенеративная внутренняя клеточная масса.

Вторая буква обозначения указывает на качество трофобласта:

  • А - слой многоклеточный, однослойный и хорошо организован;
  • В - состоит из более чем 1 слоя, клетки неравномерно распределены иди их количество - меньше нормы;
  • С - слишком малое количество клеток, имеются включения;
  • D - дегенеративный клеточный слой.

В международной классификации к числовому обозначению добавляют 0. Эта стадия экспансии расшифровывается как поздняя морула, отсутствие полости. Буквенные обозначения ограничиваются пунктами А, В, С, дегенеративные признаки не выделяют.

Фото бластоцист различных классов:

Пример расшифровки:

  • 4АА - бластоциста в стадии естественного хэтчинга, внутриклеточная масса нормального размера, плотная и без включений. Трофобласт хорошо организован, многоклеточный и однослойный.
  • ЗВВ - оболочка истончена, полость занимает большую часть бластоцисты. ВКМ хорошо различима, имеет дефекты. Клетки трофобласта неравномерно размещены (в несколько слоев) или же их количество - меньше нормы.

На какой день происходит имплантация бластоцисты? Время определяется индивидуально и зависит от показателей, выявленных при обследовании женщины. Оптимальное время для имплантации - 5-6 сутки; при слабой овуляции манипуляцию осуществляют на 2-3 день.

Качество

Основное влияние на уровень качества эмбриона оказывает полноценность мужских и женских половых клеток. На их формирование негативно могут повлиять такие факторы:

  • неблагоприятная экологическая ситуация;
  • интоксикация организма;
  • ослабление защитной системы организма;
  • хроническое переутомление;
  • ожирение;
  • несбалансированное питание;
  • гинекологические болезни;
  • неблагоприятный радиационный фон;
  • хронический стресс в результате систематической смены часовых поясов, климатических зон;
  • стимуляция овуляции гормонами.

Для того чтобы уменьшить негативное влияние на материал, нужно избегать факторов риска, а также строго следовать предписаниям врача на этапе подготовки к ЭКО.

Качество эмбрионов может быть плохое и по другим причинам. Методика экстракорпорального оплодотворения определяет такие группы факторов, как неконтролируемые (или эмбриональные) и внешние.

К эмбриональной группе относят:

  • Хромосомные нарушения.
  • Сложность прогнозирования характеристик трехдневных и пятидневных эмбрионов. В качестве дополнительного исследования применяют преимплантационную генетическую диагностику (ПГД) - метод, позволяющий отбраковать некачественный материал. Но проверка осуществляется не всегда, к ней прибегают только в том случае, если предыдущие попытки ЭКО были неудачными.
  • Нарушения в структуре клеток (дефекты нитей хромосом, митохондрий).
  • Сбой в активации генома. Нарушение происходит на 3 сутки, из-за чего качество материала существенно ухудшается, или же деление вовсе прекращается. Именно по причине такого риска отдают предпочтение подсадке на 5-6 день, когда опасность уже не угрожает.

Внешние факторы:

  • Технические возможности лаборатории.
  • Среда для культивации бластомеров (влияет на развитие и качество эмбрионов, а также их приживаемость).
  • Состав воздуха.
  • Режим температуры окружающей среды.
  • Бесперебойное функционирование инкубаторов.
  • Профессионализм медперсонала.
  • Внешние факторы, влияющие на качество материала, можно корректировать, поэтому, решив обратится за помощью в клинику, изучите технические возможности лаборатории и обратите внимание на уровень квалификации медиков.

ЭКО - современная процедура, позволяющая наблюдать за развитием материала еще до имплантации бластоцисты. Такая возможность делает реальным отбор самых жизнеспособных, развивающихся правильно эмбрионов. Но не стоит огорчаться, если эмбрионы оказались не очень хорошего качества по результатам оценки. Классификация достаточно условна. Очень часто бывает так, что качественные бластоцисты погибают, а имплантируются именно те, что по результату оценки были плохими. И дети рождаются полностью здоровыми.

Как жаль, что нельзя наблюдать за работой эмбриолога. Но так хочется, это так интересно. Давайте же попробуем посмотреть, что происходит в столь загадочном и недоступном месте, как эмбриологическая лаборатория.

Зрелый ооцит (Метафаза II, или MII)

Вот так красиво выглядит зрелый ооцит.

Но далеко не все ооциты, получаемые при пункции фолликулов, полностью созревают и готовы к оплодотворению. Около 5-10% всех ооцитов – незрелые, 2-5% – дегенеративные формы, и те, и другие не пригодны к оплодотворению.

Через 16-18 часов после оплодотворения in vitro (ЭКО или ИКСИ) можно наблюдать стадию презиготы – ооцит с двумя пронуклеусами (мужским и женским), генетический материал которых пока еще не слился. В условиях in vivo оплодотворение происходит в ампулярном отделе маточной трубы.

Иногда по тем или иным причинам оплодотворения не происходит…

…или происходит гипероплодотворение – в ооцит попадают два или более сперматозоида. Эмбрионы, которые при этом развиваются, нежизнеспособны.

Через 24-36 часов после оплодотворения происходит первое деление зиготы и с этого момента оплодотворенный ооцит становится 2х-клеточным эмбрионом. Клетки эмбриона на этой стадии называются бластомерами.

На этой стадии можно оценить качество эмбриона по степени деформации, вакуолизации, фрагментации (объему эмбриона, занимаемому безъядерными фрагментами цитоплазмы), чем их больше – тем ниже считается потенциал этого эмбриона к имплантации и дальнейшему развитию.

Помимо этих данных оценивается форма и относительные размеры бластомеров. Наиболее общепринятая классификация дробящихся эмбрионов по качеству – a – ab – b, где a – самый лучший, b – самый худший.

На 2-е сутки развития эмбрион человека состоит из 2х, 3х или 4х бластомеров.

Еще через сутки эмбрион в норме уже состоит из 6-8 бластомеров, однако допускается и 4 бластомера, если на 2-е сутки эмбрион был 2х-клеточным. До 8-клеточной стадии все клетки эмбриона человека тотипотентны, т.е. каждая из них может дать начало целому организму.

На 4-е сутки развития эмбрион человека состоит уже, как правило, из 8-16 клеток, начинается стадия морулы. Именно на этой стадии in vivo эмбрион попадает из маточной трубы в полость матки. Морулы также различаются между собой по степени компактизации бластомеров (С1 – С2 – С3 – С4).

К концу 4-х суток развития внутри морулы постепенно образуется полость – начинается процесс кавитации.

С того момента, как полость внутри морулы достигает 50% ее объема, эмбрион называется бластоцистой.

Чем больше полость бластоцисты и лучше развита внутренняя клеточная масса и трофобласт – тем больше ее потенциал к имплантации.

На этой стадии также можно оценить качество эмбриона по степени деформации, вакуолизации, фрагментации. Кроме этого, оценивается форма и относительные размеры бластомеров. Наиболее общепринятая классификация дробящихся эмбрионов на 5 дне развития по качеству – A – B – C, где A – самый лучший, С – самый худший. Применяется двухбуквенное обозначение – одна для трофобласта, другая – для эмбриобласта.

В дальнейшем эмбрион начинает увеличиваться в размерах. При этом бластомеры продолжают делиться.

Когда полость бластоцисты достигает значительного размера, истончившаяся за счет растяжения блестящая оболочка разрывается и начинается процесс хэтчинга (выклева) эмбриона из блестящей оболочки.

Только после окончания этого процесса бластоциста способна имплантироваться (прикрепиться) в эндометрий матки.

Имплантация происходит как правило на 6-7 день развития эмбриона, считая день оплодотворения нулевым.

Иногда бывает невозможно установить резкие разграничительные линии между теми или иными вариантами развития эмбриона. Поэтому вышеприведенная классификация относительна, приблизительна.

Существуют переходные формы, которые трудно отнести к той или иной определённой группе. И порой самый худший эмбрион по классификации может являться одним из лучших по выживаемости и способности к дальнейшему развитию.

Существует огромное множество факторов, которые неизвестны нам и не поддаются контролю, но именно благодаря им в редких случаях эмбрионы с не самыми лучшими характеристиками успешно имплантируются в матке, а в дальнейшем рождаются дети.

Образование зиготы – это результат слияния генетического материала сперматозоида и яйцеклетки, которое происходит в результате одного из методов лечения бесплодия – ЭКО или ИКСИ. Именно этот начальный клеточный цикл продолжается максимально долго – почти сутки. Итогом становится получение в процессе искусственного оплодотворения двух одинаковых клеток – бластомеров.

Они характеризуются круглой формой, идентичной структурой, потенциалом развития и биохимией. У бластоцист существует одна очень значимая функция – тотипотентность, что означает возможность создавать различные живые клетки. Следует учесть, что на этапе 8 бластомеров эта функция исчезает. В дальнейшем бластомеры приобретают другое свойство – специализацию. Этим объясняется тот факт, что любое травмирование эмбриона, полученное на стадии 8 бластомеров, без труда пропадает. Как правило, в эти же сроки эмбрион может разделиться на 2-3 части, в результате чего развиваются однояйцевые близнецы.

Дробление эмбрионов осуществляется и в дальнейшем, клетки внешней оболочки морулы превращаются в эпителий, активно способствуя наполнению межклеточного пространства ионами и водой. В итоге внутри образуется особая полость, которая называется бластоцелью. И с этого момента эмбрион, полученный в результате ЭКО или ИКСИ, обретает новое обозначение – бластоциста или бластула.

Качество эмбрионов, полученных при экстракорпоральном оплодотворении

Условная оценка

класс 1 (А) - отлично

Максимальная скорость дробления;

Отсутствие фрагментов без ядер;

Бластомеры идеальной формы;

Отличная способность к имплантации в процессе ЭКО.

На картинке:
1)двухклеточный эмбрион 1-го класса;

2) четырёххклеточный эмбрион 1-го класса;

3) пятиклеточный эмбрион 1-го класса;

4)восьмиклеточный эмбрион 1-го класса;

5)двенадцатиклеточный эмбрион 1-го класса.

класс 2 (В) - хорошо

Бластомеры, полученные в результате оплодотворения яйцеклетки, неровной формы, либо присутствие фрагментов цитоплазмы также неровной формы, при их количестве не более 10% от общего объёма;

Отличная способность к имплантации.

1)двухклеточный эмбрион 2-го класса;

2) пятиклеточный эмбрион 2-го класса;

3) четырёххклеточный эмбрион 2-го класса;

4)восьмиклеточный эмбрион 2-го класса.

класс 3 (С) – удовлетворительно

Фрагментация, составляющая от 10 до 50% от общего объёма

1) шестиклеточный эмбрион 3-го класса;

2) восьмиклеточный эмбрион 3-го класса.

класс 4 (D) - неудовлетворительно

Фрагментация, составляющая более 50% от общего объёма

Стадии развития эмбриона и скорость их роста

2-е сутки
После выполнения пункции, эмбрион, полученный в результате оплодотворения яйцеклетки, достигает стадии 2-4 –х бластомеров (в некоторых случаях - 6-8 бластомеров);

1)нормальное оплодотворение яйцеклетки;

2)патологическое оплодотворение яйцеклетки.

Проще всего осуществить выбор эмбрионов на вторые сутки после пункции, выполненной в процессе программы ЭКО. К этому моменту явно видно, какие эмбрионы замедляются в развитии, а какие и вовсе его прекращают.

3-4 е сутки
6-8 бластомеров (в некоторых случаях - 8-16);
Когда эмбрион, полученный в результате искусственного оплодотворения, достигает стадии 12-14 бластомеров, он меняет форму на шаровидную. Контуры приобретают гладкую поверхность. Это происходит, благодаря тому, что межклеточные контакты у бластомеров становятся мощнее. С данного момента бластомер называют морулой. Если сравнивать с естественными условиями, то, как раз на этой стадии, эмбрион оказывается в матке.

5-е сутки
Бластоциста (16 бластомеров и более);
Бластоциста покидает zona pellucida, далее наступает очередь естественного хэтчинга.
К этому времени поверхность максимально растягивается, и, соответственно становится очень тонкой. Образуется небольшое отверстие, через которое бластоциста и выходит за пределы zona pellucida. Наступает новая стадия – стадия имплантации бластоцисты. (см фото ниже).

Благодаря тому, что эмбрион можно культивировать до стадии бластоцисты, у эмбриологов, работающих в центре по лечению бесплодия, расширяются возможности для выбора наиболее качественных экземпляров. К тому же и сам процесс перемещения эмбриона в матку в процессе экстракорпорального оплодотворения становится более физиологичным, что благоприятно сказывается на результате имплантации, и, соответственно, на успехе ЭКО.

Выбор оптимального момента для подсадки эмбриона

Как правило, в клиниках по лечению бесплодия практикуется подсадка эмбриона на вторые или третьи сутки после культивирования. На практике не было выявлено существенного влияния на результат беременности при переносе на вторые или на третьи сутки. Момент выбирают, исходя из анализа интенсивности, а также равномерности дробления эмбрионов. В случае, если на вторые сутки выбор сделать не получается – подсадка выполняется на следующий день.

Пациентке советуют предварительно позвонить в центр по лечению бесплодия и уточнить, как происходит оплодотворение яйцеклетки. Врач сообщает, когда ей следует подойти для процедуры переноса эмбрионов в матку.

Как показывает практика, при экстракорпоральном оплодотворении лучше всего переносить в полость матки максимум два эмбриона, при условии, что оба отличаются высоким качеством. Если же качество эмбрионов вызывает сомнения, возможна пересадка трёх эмбрионов.

Некоторые центры по лечению бесплодия практикуют в процессе ЭКО перенос четырёх, и даже пяти эмбрионов. Окончательное решение в этом случае за эмбриологом. Но в последнее время всё больше известных специалистов – как отечественных, так и зарубежных – рекомендуют не подсаживать более 3-х эмбрионов. Ведь, как правило, чаще всего все эмбрионы или приживаются, или погибают.

Подсадка в полость матки большого количества эмбрионов резко увеличивает риск развития в процессе экстракорпорального оплодотворения многоплодной беременности. Поэтому постарайтесь обсудить этот вопрос с вашим доктором.

С того момента, когда женщина узнает о беременности, она начинает ежедневно прислушиваться к своему организму, пытаясь уловить малейшие изменения и понять, что происходит с будущим ребенком. Если же речь идет об экстракорпоральном оплодотворении, то повышенное внимание к своим ощущениям начинается еще раньше. Как происходит развитие эмбриона по неделям? Перечислим самые характерные процессы на всех этапах его развития in vitro и внутриутробно.

После и их успешного оплодотворения методом обычного ЭКО или же начинается развитие эмбрионов. По дням этот процесс выглядит следующим образом:

  • Нулевой день: собственно оплодотворение.
  • Первый день : оценивается наличие в эмбрионе мужского и женского ядер.
  • Второй день: образование зиготы путем слияния женского и мужского геномов; начало деления эмбриона и оценка его качества по фрагментации, размеру и форме.
  • Третий день: эмбрион состоит из 4-8 бластомеров (дочерних клеток).
  • Четвертый день : бластомеров не менее 10 (в идеале – 16), поверхность эмбриона становится более гладкой – происходит так называемый процесс компактизации; с этого момента он называется морулой. При естественном зачатии именно на этой стадии эмбрион из трубы переходит в полость матки.
  • Пятый и шестой дни . Эмбрион получает название бластоцисты, которая состоит из двух видов клеток. Бластоциста покрыта блестящей оболочкой, которая разрывается; только после этого эмбрион способен к имплантации.
  • Седьмой день . При успешном хетчинге (выходе бластоцисты из оболочки) происходит имплантация.

Этапы развития эмбриона

Еще в 1960-е годы фотограф Леннарт Нильсон, используя мощный объектив, сумел сделать фото развития эмбриона по неделям. По большому счету, этот процесс одинаков как при естественном зачатии, так и в том случае, если было использовано экстракорпоральное оплодотворение. Различаются лишь начальные этапы внутриутробного развития. Перечислим основные стадии развития эмбриона по неделям после ЭКО:

Первый триместр

Первый триместр является наиболее важным в формировании эмбриона, поскольку именно в этот период происходит закладка органов.

Второй триместр

14-15 недели . Появляются брови и ресницы, малыш может делать мимические движения, укрепляется костно-мышечная система. Сердцебиение усиливается настолько, что его можно услышать, используя акушерский стетоскоп. Поджелудочная железа начинает вырабатывать инсулин, изменяются половые органы (например, у мальчиков образуется предстательная железа).

16-19 недели . Появляются ногти на пальцах, усовершенствуются органы чувств, уши начинают слышать, а глаза – различать свет. Размер плода увеличивается настолько, что мама чувствует его шевеления; более совершенным становится состав крови.

20-25 недели . В этот период улучшается координация движений; шевеления плода начинают чувствовать все женщины. Укрепляются кости.

Третий триместр

26-30 недели . Заканчивается формирование альвеол в легких, которые вырабатывают необходимое для сохранения их формы вещество (сурфактант). Малыш активно реагирует на громкие звуки, может моргать. Быстрыми темпами развивается мозг, начинает формироваться жировая ткань, кожа приобретает упругость. К этому времени ребенок становится практически жизнеспособным.

30-38 недели . Кожа становится более гладкой, ребенок набирает вес, работа внутренних органов совершенствуется. Ближе к моменту родов ребенок меняет положение, переворачиваясь головой вниз (не всегда, но в большинстве случаев).

Развитие плода человека

Таблица размеров плода

Вес и рост плода – одни из наиболее важных параметров, которые помогают определить, насколько правильно протекает его внутриутробное развитие. Отслеживать эти критерии, с некоторыми допустимыми погрешностями, позволяет ультразвуковое исследование, а также стандартные измерения размеров матки и окружности живота. В таблице ниже приведены усредненные значения, на которые ориентируется врач при оценке развития плода.

До недавнего времени о первой неделе развития зародыша человека было известно очень мало, так как находки оплодотворенных яиц в женских половых путях были случайны и чрезвычайно редки. Самая богатая коллекция гистологических препаратов зародышей человека ранних стадий развития принадлежи кафедре эмбриологии Института им. Карнеги в Вашингтоне. Она включает более 600 препаратов, явившихся предметом систематического обзора R.O.Rahilly время принята во всем мире подавляющим большин> (85) . Классификация.Карнеги. в настоящее ством авторов, занимающихся ранними этапами развития человека:


Стадия
"Карнеги"
Длина Возраст (дни) Главные события
1 1 Оплодотворение
2 2 - 3 2 - 16 бластомеров
3 4 - 5 Свободная бластоциста
4 5 - 6 Начало нидации
5 0.1 - 0.2 7 - 12 Нидация и изменение трофобласта

(По 24 )

Только многолетний труд Роберта Эдвардса позволил выработать методы выращивания зародышей человека до стадии бластоцисты in vitro и более углубленное изучение процессов раннего эмбриогенеза.

Оплодотворение происходит, как правило, в ампуле маточной трубы. Дробящийся зародыш движется по трубе в полость матки. Важную роль в этом транспорте играют ампулярно-перешеечное соединение и перешеек, обладающие хорошо развитой мускулатурой и ресничками. Ампулярно-перешеечное соединение может быть местом нахождения водителя ритма трубы (34).

Движение зародыша, окруженного клетками яйценосного бугорка и лучистого венца, в ампуле сопровождается его неполным вращением. В месте маточно-трубного соединения уже была обнаружена сфинктерная активность. В маточной трубе женщины зародыш может находиться до четырех дней. 72часа зародыши находятся в ампуле, включая время прохождения ампулярно-перешеечного соединения (30 часов), и затем быстро проходят через перешеек в полость матки.

Самая поздняя стадия развития зародыша человека среди всех зародышей, выделенных из маточной трубы, - семиклеточный зародыш, обнаруженный в проксимальной средней четверти трубы через 83 часа после полового сношения и через 77 часов после пика ЛГ. Он был свободен от клеток лучистого венца, немного уплощен, имел полярные тельца и содержал бластомеры неодинаковых размеров (4) . Зародыши различных стадий были вымыты и из полости матки. Самый ранний из них - 12-тиклеточный, самый поздний 186-клеточная бластоциста (21,51 ). У большинства видов, в том числе у человека, зародыш обычно попадает в матку на 8-клеточной стадии. Согласно классификации "Карнеги" I стадия развития зародыша соответствует оплодотворению. Если за отправную точку отсчета времени принять момент встречи гамет (час 0), события быстро разворачиваются следующим образом: час 2 - диссоциация клеток яйценосного бугорка; час 7 - прохождение через прозрачную оболочку; между часом 12 и часом 24 - образование и слияние двух пронуклеусов. Общий диаметр зиготы с прозрачной оболочкой составляет в среднем 175 мкм. Диаметр собственно зиготы 100 мкм, диаметр каждого пронуклеуса 30 мкм.

Стадия 2 - дробление - начинается с окончанием первого митотического деления, т.е. с появлением двух бластомеров, между 24-м и 30-м часом. Она характеризуется серией делений в быстром ритме, примерно одно в каждые 24 часа, вплоть до появления полости дробления. В течение всей этой стадии форма и размеры зародыша не меняются, что обусловлено сохранением блестящей оболочки. При достижении 12-тиклеточной стадии зародыш становится морулой (появление центральной массы).

3-я стадия характеризуется превращением морулы в зародышевый пузырек, или бластоцисту, путем образования полости, бластоцеле.

После стадии 4-х-8-ми бластомеров зародыш претерпевает важные изменения, называемые компакцией. До стадии 4-8 бластомеров индивилуальные бластомеры отличаются друг от друга. Компакция характеризуется изменением структуры и свойств цитоплазматических мембран. Отдельные бластомеры становятся неотличимы друг от друга, и упаковка их становится очень компактной (отсюда и название процесса). Эти изменения в цитоструктуре совпадают со значительными изменениями в ультраструктуре цитоплазмы и цитоплазматических органелл. Компакция приводит к образованию наружного слоя клеток, будущей трофэктодермы. На этой стадии между бластомерами появляются плотные соединения, десмосомы.

Многие эмбриологи полагают, что клеточное движение в эту стадию определяет выделение стволовых клеток зародыша: наружные клетки дают начало трофэктодерме, а внутренние - внутренней клеточной массе бластоцисты. С этого времени свойства разных бластомеров становятся разными. Происходят модификации в структуре и свойствах трофэктодермы, включающие синтез поверхностных гликопротеинов, появление систем мембранного транспорта и изменения в метаболизме липидов клеточных мембран.

Морулы человека и одна бластоциста были вымыты из полости матки приблизительно через 5 дней после овуляции. Бластоциста была окружена прозрачной оболочкой, состояла из 180-ти клеток и имела строение, типичное для бластоцист других видов (22 ). В отличие от некоторых других видов (кролик, свинья), в преимплантационном периоде бластоциста человека не претерпевает значительного увеличения в размерах (экспансии). При выращивании бластоцист человека в культуре было установлено, что они обладают четко выраженной внутренней клеточной массой и большой полостью, возникающей после появления скопления больших клеток на одном полюсе морулы.

В трофобласте различают два типа клеток: типичные стеночные (муральные) клетки и другие клетки, имеющие признаки секреторной активности. Прозрачная оболочка сохраняется и окружает бластоцисту у многих видов. Она либо сбрасывается до или во время имплантации благодаря действию самого зародыша - процесс, названный "вылупливанием" (hatching ) из наблюдений над зародышами грызунов, - либо растворяется под действием маточного секрета и ферментов зародыша. У некоторых видов бластоцисты ритмически сокращаются, пульсируют. У мыши при ритмических сокращениях большое количество жидкости изгоняется из бластоцеле в пространство между зародышем и прозрачной оболочкой. Подобную же пульсацию проявляли в культуре и отдельные бластоцисты человека.

Развитие зародыша контролируют некие внутренние часы. Характер этой регуляции пока не известен. Скорее всего, она не связана непосредственно с хронологическим возрастом и, по-видимому, определяется, в первую очередь, числом ядерных или цитоплазматических делений.

Ранние стадии развития зародышей млекопитающих в определенной степени резистентны к действию различных тератогенов (ионизирующая радиация, лекарственные препараты, алкоголь) (34 ). Это обусловлено, скорее всего, отсутствием в это время значительных клеточных миграций и сходными метаболическими потребностями бластомеров (34 ).

Отдельные бластомеры различимы до 8-клеточной стадии. Компакция начинается с 1б-клеточной стадии. По данным изучения развития зародышей человека в культуре хронология развития их может быть представлена следующей таблицей:

Время от оплодотворения до достижения стадии развития (часы)

Стадия 1 2
2 бластомера 34.9 . 1.9 46
4 бластомера 51.2 . 1.9 63
8 бластомеров 67.9 . 2.5 86
16 бластомеров 84.6 . 3.4 112
Морула 100.2 . 3.0 120
Ранняя бластоциста 112.7 . 3.8 132

1: расчетное среднее время стадии дробления. стандартная ошибка;

2: Верхняя 95%-ная точка (время от оплодотворения, когда 95% зародышей достигают данной стадии) (34 )

Для переноса зародышей в полость матки после оплодотворения вне организма наиболее пригодны 16-клеточные зародыши (34 ).

Жидкость бластоцеле частично изолирована от окружающей среды и образуется, вероятно, за счет активного транспорта таких ионов, как ионы натрия, хлора и бикарбоната, что сопровождается движением в бластоцеле воды и углекислого газа. Белки могут пересекать трофобласт и входить в бластоцеле, но механизмы этого транспорта еще требуют окончательного выяснения.

Дифференцировка зародыша млекопитающих сопровождается значительными изменениями его ультраструктуры, причем многие изменения цитоплазмы и органелл отражают растущую сложность обмена веществ зародыша. Некоторые цитоплазматические структуры унаследованы от яйцеклетки и представляют собой запасы РНК и белков матери, но они быстро исчезают во время дробления. В бластомерах имеется много вирусоподобных частиц, но об их значении для раннего развития можно только догадываться. В свойствах клеточной поверхности, особенно клеточной поверхности трофобласта, происходят локальные изменения, которые, должно быть, связаны со все более сложными функциями мембранного транспорта и ответа морулы и бластоцисты на внешние факторы.

Ультраструктура бластомеров тесно связана с изменениями их метаболизма в течение дробления. Исследование дробящихся зародышей с помощью трансмиссионной электронной микроскопии выяснило природу важных изменений в структуре цитоплазмы и органелл во время начальных стадий роста. Относительно простая структура бластомеров периода раннего дробления сменяется развитием эндоплазматической сети, появлением многочисленных рибосом и изменениями митохондрий. Эти изменения указывают на то, что у морул и бластоцист, или даже раньше, начался активный синтез белка. Типичные цистерны шероховатой эндоплазматической сети, скудные во время раннего дробления, становятся выраженными после 8-клеточной стадии. Они формируются вблизи наружной ядерной мембраны одновременно с уменьшением количества гладкой эндоплазматической сети. Видимо, эти изменения также связаны с усилением синтеза белка.

Характерные изменения были обнаружены и в других органеллах. Ядрышки из округлых образований с плотной волокнистой структурой в течение раннего развития становятся более вакуолизированными и зернистыми. Эти изменения совпадают с увеличением числа рибосом и полирибосом и связаны, по-видимому, с синтезом рРНК. В течение дробления значительные изменения демонстрируют и митохондрии. Их морфология постоянна до 4-клеточной стадии, а затем резко меняется. У одноклеточных зигот они маленькие, электронноплотные и сферические и имеют мало крист. В течение дробления митохондрии удлиняются, в них появляется большое количество пластинчатых крист, которые могут быть растянуты и вакуолизированы. Есть указания, что у некоторых видов в клетках трофобласта и внутренней клеточной массы могут быть разные кристы. Митохондрии являются источником АТФ, кругооборот которого в период дробления очень высок.

В течение преимплантационного периода развития в клетках зародыша были обнаружены различные включения. В оплодотворенных яйцеклетках некоторых видов, как то: мышь и крыса, были обнаружены решеткоподобные структуры, отсутствующие в зародышах человека и кролика. В клетках зародышей могут быть цепочки рибосом, унаследованные от матери и используемые для поддержания белкового синтеза в течение короткого периода времени после оплодотворения, пока зародыш не сможет приступить к синтезу собственных белков. В бластомерах ранних зародышей некоторых видов были обнаружены кристаллические образования, и, если они связаны с эндоплазматической сетью, что характерно для определенных видов, то число и размеры их увеличиваются после раннего дробления. Иногда такие образования достигают очень больших размеров, например, в трофобласте кролика, при этом сходные структуры имеются и в эндометрии. Не исключено, что это материнские белки, переходящие из эндометрия в зародыш.

В зародышах и в клетках репродуктивного тракта млекопитающих, также как и во многих других типах соматических клеток, были обнаружены вирусоподобные частицы. Эти частицы похожи на опухолевые РНК вирусы, так как диаметр их около 50-100 нм, и они окружены электронно-плотными капсулами. В соматических клетках они подразделяются на три типа: тип A обнаруживается в цитоплазме или в цистернах эндоплазматической сети; тип B очень напоминает тип A, но имеет несколько отличную структуру; тип C располагается экстрацеллюлярно, например, мышиный вирус типа C. Вирусы могут наследоваться от матери путем прямой передачи и при трубных или маточных инфекциях, и такая форма наследования обычно называется вертикальной передачей. Некоторые опухолевые РНК вирусы являются эндогенными, представлены в половых и соматических клетках и передаются генетически по менделевскому типу. Вирусы, передающиеся при инфекциях, колонизируют все зародыши и не проявляют сходного менделевского распределения.

Вирусоподобные частицы были обнаружены при электронной микроскопии в зародышах, выделенных из маточной трубы, и, очевидно, латентная вирусная инфекция раннего зародыша широко распространена у млекопитающих. Геном мыши содержит много связанных с вирусами генов, которые на определенных этапах развития могут дать начало вирусным частицам. В дробящихся зародышах мыши было обнаружено четыре морфологически различных типа частиц, три из которых напоминают известные опухолевые РНК-вирусы.

Частицы типа А в течение короткого времени представлены в яйцеклетке, исчезают при оплодотворении и вновь на короткое время появляются в дробящемся зародыше, а именно, во внеклеточном пространстве, в цистернах и эндоплазматической сети бластомеров после двуклеточной стадии. Их появление совпадает, вероятно, с синтезом рибосомной РНК зародышей. РНК-вирусы типа С были обнаружены в зародышах кролика и бабуина. Они, очевидно, отпочковываются от плазматических мембран зародыша. Кроме того, они были обнаружены в клетках плацентарных мембран человека. Зародыши могут быть искусственно инфицированы обезьяним вирусом 40, вирусом полиомы и вирусом ньюкастлской болезни, причем после заражения были обнаружены различные цитоплазматические эффекты и уменьшение процента имплантации. Некоторые вирусные белки иммуногистологически были обнаружены в яйцеклетках и в дробящихся зародышах, что говорит о том, что вирусы активно участвуют в репликации и делении. Однако существует некоторое несогласие в отношении того, являются ли ультраструктурные образы вирусоподобных частиц прямым указанием на инфекцию и репликацию вирусов в зародышевых клетках. ДНК-вирусы также могут участвовать в репродукции, например вирус герпеса типа 2.

Изменения в структуре поверхности зародышей были выявлены также и при сканирующей электронной микроскопии. Так, при овуляции уменьшаются микроворсинки и складки мембраны яйцеклеток. Конические отростки и короткие микроворсинки, имеющиеся у одноклеточного зародыша млекопитающих, увеличиваются в числе и размерах к двуклеточной стадии, а на четырехклеточной стадии на поверхности отдельных клеток появляются углубления. В ходе дальнейшего дробления углубления постепенно исчезают, зато микроворсинки становятся более многочисленными, и одновременно с этим плотность поверхности зародыша значительно увеличивается, особенно на стадии бластоцисты, за счет образования тонких складок мембраны. Микроворсинки, расположенные в основании бластомеров, могут способствовать сближению соседних клеток при образовании морулы.

Интрацеллюлярные соединения и соединительные комплексы между бластомерами образуются в период дробления. Эти соединения устанавливают структуру бластоцисты и, возможно, определяют также специфическую позицию клеток во время дробления. Первичный контакт между клетками, видимо, обеспечивается микроворсинками, и, вероятно, этого достаточно для поддержания контакта в начальном периоде дробления. Соседние клетки соединены за счет интердигитаций микроворсинок, которые на этой стадии перераспределяются на эмбриональной поверхности. Микроворсинки сохраняются на наружной поверхности бластомеров и в базальной области контакта между соседними клетками, а в апикальной зоне контакта между клетками количество их становится ограниченным. Микроворсинки, сохраняющиеся в базальной зоне контакта, обеспечивая соединение соседних клеток, могут на большую глубину проникать в зону соседних клеток.

Фундаментальные изменения происходят во время компакции, когда в апикальной зоне контакта между соседними клетками образуются плотные соединения (десмосомы) и "гэп"-соединения (соединения "в виде ущелья"). Эти изменения начинаются более плотным соприкосновением мембран и уплотнением клеток в местах их начального слияния. Процессы эти кальций-зависимы. Фокусы тесного соприкосновения клеток, характеризующиеся к тому же плотным подлежащим материалом, предшествуют образованию десмосом вблизи наружной поверхности трофобластных клеток, при этом в апикальной области соседних клеток образуются соответствующие друг другу выступы и углубления.

Таким образом, наружная поверхность трофобласта образует значительный барьер проницаемости, ограничивающий свободное поступление различных веществ в зародыш, в то время как более базально расположенные соседние клетки разделяются ущельем шириной 4,0 нм и трофобласт проницаем для таких молекул как лантан. Во внутренних клетках эти изменения выражены не в такой значительной степени. Таким образом, компакция приводит к образованию в зародыше наружных и внутренних клеток, при этом внутренние клетки заключены в оболочку из наружных клеток, и это является первым указанием на то, что теперь в зародыше существует два типа клеток. Позднее наружные клетки образуют трофэктодерму бластоцисты и, возможно, внесут вклад и в некоторые другие закладки. Внутренние клетки, обнаруживаемые у мыши после восьмиклеточной стадии, дадут начало фетальньм компонентам.

Компакция включает в себя и другие значительные изменения в ультраструктуре слоя трофобластных клеток. В корковой зоне бластомеров происходит перераспределение клеточного скелета, выражающееся в том, что в точках контакта параллельно мембране располагается микротрубочки. Их функцией может быть стабилизация и укрепление мембраны. Образование микротрубочек является необходимым компонентом компакции. АТФ для покрытия энергетических потребностей трофобластных клеток поставляют, вероятно, митохондрии, перераспределяющиеся в корковую зону бластомеров. Кроме того, при образовании плотных соединений были обнаружены модификации мембран. Типичные решетки и полоски на поверхности внутренней мембраны (поверхность А) и соответствующие им бороздки наружной мембраны (поверхность В) были обнаружены в замороженных препаратах, "гэп"-соединения располагались базальнее плотных соединений. Трейсерные субстанции проникают в бластоцеле через трофобластные клетки и через "гэп"-соединения, но не через плотные соединения.

После появления десмосом на четырехклеточной стадии вклад в структуру зародыша постоянно повышается. В бластоцисте десмосомы между соседними клетками трофобласта очень сложны, связаны с микрофилламентами и поддерживают структуру зародыша. Они очерчивают будущую трофэктодерму, ткань, обладающую многими свойствами секреторного эпителия, электрическое сопротивление которой постоянно повышается. (Раздел по ультраструктуре зародыша написан по книге Edwards (34 )).