Что такое энергия ветра. Ветряные электростанции. Домашние ветряные электростанции. Ветроэнергетика

Энергия ветра является одной из форм солнечной энергии. Ветры появляются из-за неравномерного прогрева атмосферы солнцем, неровностей земной поверхности и вращения Земли. Направление потоков ветра изменяется в зависимости от рельефа земной поверхности, наличия водоемов и растительного покрова.
Ветогенераторы используют это движение воздуха и преобразуют его в механическую энергию, а затем в электричество. В этой статье будет кратко затронут вопрос о том, как работает ветрогенератор , а также вопросы о достоинствах и недостатках ветроэнергетики .

Люди начали использовать энергию ветра несколько столетий назад, когда появились ветряные мельницы, которые качали воду, мололи зерно или выполняли другие функции. Сегодняшний ветрогенератор является весьма продвинутой версией ветряной мельницы. Большинство ветровых турбин имеют три лопасти, закрепленные на вершине стальной башни — мачты. Вестрогенератор высотой в 25 м может снабжать электричеством жилой дом, ветрогенератор высотой в 80 м может обеспечивать электричеством сотни домов .

При прохождении ветра через турбину, лопасти за счет кинетической энергии ветра начинают вращаться. Это приводит во вращение внутренний вал, который соединен с редуктором, увеличивающим скорость вращения и подключенным к генератору, который осуществляет выработку электроэнергии. Чаще всего ветряные турбины состоят из стальной полой мачты, высота которой может достигать 100 м, ротора турбины, лопастей, оси генератора, редуктора, генератора, инвертора и аккумулятора. Часто ветрогенераторы оснащаются оборудованием оценки и автоматического поворота в направлении ветра, а также могут изменять угол или «шаг» лопастей для оптимизации использования энергии.

Типы ветрогенераторов

Современные ветровые турбины делятся на две основные группы;

  • с горизонтальной осью вращения, как в традиционных ветряных мельницах, используемых для откачки воды;
  • с вертикальной осью вращения, это роторные и лопастные конструкции Дарье.

Большинство современных ветрогенераторов имеют горизонтальную ось вращения турбины.

Обычно они состоят из:

  • мачты полой внутри, сделанной из металла или бетона;
  • гондолы , которая крепится наверху мачты и в которой находятся валы, редуктор, генератор, котроллер и тормоз;
  • ротора , в который входят лопасти и ступица;
  • низкоскоростного вала , который приводится в движение ротором;
  • высокоскоростного вала , который подсоединен к генератору;
  • редуктора , которые механически соединяет низкоскоростной и высокоскоростной вал, увеличивая скорость вращения последнего;
  • генератора , который вырабатывает электроэнергию;
  • контроллера , который управляет работой ветрогенератора;
  • флюгера , который определяет направление ветра и ориентирует турбину в необходимом направлении;
  • анемометра , который определяет скорость ветра и передает данные контроллеру;
  • тормоза , для остановки ротора в критических ситуациях.

Преимущества и недостатки ветроэнергетики

Возобновляемый источник энергии

Энергия ветра является общедоступным, возобновляемым ресурсом, поэтому независимо от того, сколько ее используется сегодня, в будущем она по-прежнему будет доступна. Энергия ветра является также источником относительно чистого электричества — ветряные электростанции не выделяют загрязняющих воздух веществ или парниковых газов.

Стоимость

Даже при том, что стоимость энергии ветра резко сократилась за последние 10 лет, ее использование требует более значительных первоначальных инвестиций, чем приобретение генераторов, работающих на ископаемом топливе. Около 80% стоимости составляет техника, с подготовкой площадки и установкой. Тем не менее, если сравнивать использование ветрогенератора и установки, работающей на ископаемом топливе, в течение всего срока эксплуатации, то ветроэнергетическая установка становится гораздо более конкурентоспособной, поскольку для нее не требуется приобретение топлива, а эксплуатационные расходы сведены к минимуму.

Воздействие на окружающую среду

Хотя ветряные электростанции влияют на окружающую среду не так значительно, как электростанции, работающие на ископаемом топливе, они все же создают некоторые проблемы. Их лопасти создают шум, визуально они могут портить ландшафт, о них разбиваются птицы и летучие мыши. Большинство из этих проблем решаются в той или иной мере за счет различных технологий и разумного размещения электростанций.

Другие проблемы, связанные с ветрогенераторами

Основная проблема, связанная с использованием энергии ветра, заключается в том, что ветер дует не всегда, когда требуется электричество, в некоторых местностях ветра дуют очень слабо, так что там не выгодно использовать ветрогенераторы. Ветер нельзя хранить, как бензин (хотя электроэнергию, полученную за счет ветра, можно хранить при помощи аккумуляторных батарей). Местности с сильными ветрами часто бывают не очень удобны для заселения. Наконец, ветроэнергетические установки могут создавать проблемы для других способов эксплуатации земли. Ветряные турбины могут мешать выпасу скота или занимать место под посевы.

(Просмотрели11 671 | Посмотрели сегодня 7)


Солнечная энергия — наше будущее
Стоимость солнечных батарей за последние 35 лет уменьшилась в 100 раз Мировые АЭС. Производство атомной энергии по состоянию на 2014 год

По подсчетам суммарная мощность энергии ветра в 100 раз превышает мощность всех рек на планете. То есть, ресурсы ветра практически неисчерпаемы. В некоторых странах, например, в Шотландии и Дании, вся электроэнергия, используемая в быту — освещение, стиральные машины, домашние компьютеры и т.д. произведена с помощью энергии ветра.

Ветроэнергетика — одна из отраслей энергетики, относящаяся к возобновляемым (альтернативным) источниками энергии. Для преобразования энергии ветра в электрическую используются ветрогенераторы. В общих чертах, они представляют из себя конструкцию из опорной башни (высота которой может превышать 100 м) и трехлопастного винта, который под воздействием силы ветра вращает электрогенератор.

Ветрогенераторы в Дании

Историческая справка

Энергия ветра и ее использование известна с незапамятных времен. Ветер был основным движителем в мировом судоходстве. А первые ветряные мельницы появились в Вавилоне, упоминания о них датируются 1750-м годом до нашей эры. В Европе они появились намного позже — примерно в X-XI веках нашей эры. Большей частью их использовали для помола зерновых. В Нидерландах — для откачки воды с осушаемых земель. В Скандинавии мощности ветряков использовали на лесопилках. Отличие европейских мельниц от азиатских довольно существенное — у европейских горизонтальная ось вращения, у азиатских — вертикальная.

В Европе мельницы строились, что естественно, в регионах с высокой ветровой нагрузкой. В Ла Манче (Испания) до сих пор сохранились десятки старых мельниц. К концу XIX века счет ветряных мельниц в Европе шел на десятки тысяч. Только в Германии их число приближалось к 19 тысячам. Строительство ветряков остановилось, а потом начало сокращаться после появления паровых машин. Но еще в 30-40-х годах XX века, в сельской местности ветряки использовались довольно активно. К ветряной энергии вернулись в 1970-х годах, когда из-за ближневосточных конфликтов начались перебои с поставками нефти. Первой тогда спохватилась Дания, с ее постоянными северными ветрами. Именно датчане начали первые эксперименты — производство электроэнергии из ветра.

Осознав все преимущества использования энергии ветра, В 1979 году датская компания Vestas представила первую ветроустановку современного типа. Примерно треть ветряков, которые работают в странах Европы, произведены Vestas.

Второй, более мощный, толчок дал Чернобыль. Именно эта катастрофа стимулировала массовое увлечение ветроэнергетикой, как альтернативным источником энергии. В начале 1990-х Европа и США занялись производством энергии из ветра в промышленных масштабах и ветрогенераторы стали устанавливать массово. Чуть позже эти направлением заинтересовалась и КНР. По состоянию на 1997 год ветрогенераторы по всему миру вырабатывали 7475 мВт электроэнергии в год. Развитие отрасли продолжается: к 2013 году мировые объемы вырабатываемой ветром электричества увеличились в 45 раз и продолжают расти.

Преимущества ветряных электростанций

Как у любого начинания у ветроэнергетики есть плюсы и минусы. Плюсы энергии ветра лежат на поверхности — она неиссякаема и абсолютно экологична. У нее нет отходов. По предварительным исследованиям, массовое использование ВЭУ может ослабить силу ураганов. И не только — ветроустановки влияют на климат — он становится более континентальным. Но главное, наверное то, что 1 МВт мощности ветряка сокращает выбросы углекислого газа на 1800 тонн в год.

Наиболее перспективными для развития ветроэнергетики, из-за стабильности ветров, считаются прибрежные зоны. Экономически выгодным считается строить ветроэлектростанции в море, в 10-12 км. от побережья, не смотря на то, что строительство такой станции в 1,5-2 раза дороже, чем на суше. Такие электростанции называются «оффшорными».

На фото: самоподъемная платформа в процессе установки ветрогенератора

Ветрогенераторы бывают не только промышленные или коммерческие, но и бытовые. Никому из частных лиц не запрещено установить свой персональный ветряк, обеспечивая жилье электрическим светом. Ветряки используются и как водяные насосы, например, для подачи воды из глубоких колодцев. Ветроэнергетические установки просты в использовании и не требуют подготовки, тем более специального образования — это несомненный плюс современных «ветряков». Ветер может быть сильным, может быть слабым, но в регионах со стабильной ветровой нагрузкой он есть всегда. Тогда как тепловые, например, электростанции полностью зависят от поставок топлива — газа, угля или мазута. Бытовые ветроустановки компактны, легки и мобильны. Даже установка мощнейшей промышленной ветроустановки с вбиванием свай, монтажом и заливкой фундамента, а затем установкой самого оборудования занимает не больше 10-ти дней. Постройка тепловой электростанции занимает годы и требует намного больше сил, труда и профессионального обслуживания. Ветряная электростанция, поясним термин, состоит из нескольких ветряных электроустановок, объеденных в одну промышленную сеть. Число таких «ветряков» может достигать нескольких десятков.

Конечно есть и минусы:

  1. Главные недостатки ветряных электростанций — стоимость электроэнергии, выработанной с помощью силы ветра, за небольшим исключением, дороже электричества, произведенного сгоранием ископаемого топлива.
  2. Зависимость от силы ветра. Чем выше его сила, тем дешевле произведенная электроэнергия.
  3. Вращаясь, турбины ВЭУ создают теле и радиопомехи.
  4. Ощутимая вибрация. По этой причине, мощные промышленные ВЭУ нельзя устанавливать ближе чем на 300 метров от жилых домов.
  5. Вращение лопастей создает область пониженного давления, что вызывает повышенную гибель летучих мышей

Ветроэнергетика в мире

В мире давно уже поняли все плюсы ветроэнергетики и агитировать за ее развитие особенно не надо. Дания, пионер в области экологической энергетики, сегодня благодаря энергии ветра получает до 42% нужного стране электричества. В Евросоюзе за счет ветроэнергетики производится до 7,5-8% всей потребляемой электроэнергии. Это колоссальные объемы, учитывая масштабы экономики стран ЕС. Не отстает и Китай, принявший специальную программу по развитию и использованию альтернативной энергетики. Специальные программы, с налоговыми льготами действуют и в США. Сегодня 22% всех ветроэлектростанций планеты располагаются в странах Северной Америки, в основном в Канаде и США. Ветряки, установленные в Никарагуа, обеспечивают стране более 20% всей потребляемой электроэнергии. 31% мировых ветрогенераторов приходится на Азию, в основном на Китай.

А вот Европа разместила в своих странах 44% всех ветроустановок мира. Оно и понятно — в экономически развитой Европе очень плохо с ископаемыми энергоресурсами. В Европе производятся крупнейшие ветроустановки мира. Тон задает Германия и Дания с ее колоссальным опытом в разработке ветрогенераторов. Сейчас наметилась тенденция по увеличению мощности ВЭУ. Общеевропейский проект UpWind направлен на создание офшорной ветроустановки мощностью в 20 МВт. Германская Enercon выпускает модель E-126 (126 — размах лопастей в метрах) мощностью 7,58 МВт. Вместе с лопастями высота установки достигает почти 200 метров. Еще крупнее и мощнее ветроустановка V-164 (опять, 164 — размах лопастей в метрах) датской компании Vestas — 8МВт. Но она предназначена в основном для оффшорных зон.

С уменьшением количества полезных ископаемых человек обратился к иным видам источников энергии. Атомные станции, несмотря на свою высокую эффективность, продолжают пугать загрязнением природы. Чернобыль и Фукусима все еще на устах. Неудивительно, что человечество обратило внимание на природные источники энергии - солнце, ветер, тепло. Сегодня ветровая энергетика развивается семимильными шагами.

Все больше людей сталкивается с такими источниками и использует их в повседневной жизни. Хотя сама ветроэнергетика и является новой технологией, однако вокруг нее уже успело накопиться множество мифов. В большинстве своем они принадлежат на старых технологиях, а распространяют их многочисленных противники прогресса. Расскажем ниже об основных заблуждениях, связанных с этим направлением энергетики.

Ветровые турбины очень шумные. Согласно данному мифу человек не может находиться долго рядом с шумными ветровыми двигателями. Однако они работают довольно тихо. На расстоянии в 250-300 метров от ветроэлектростанции шум от ее работы не превышает громкость работы обычного домашнего холодильника. У работающих турбин звук похож на легкий свист, он намного тише относительно других современных установок. Даже в малонаселенных и сельских районах, где посторонние шумы не могут скрыть работу ветровых турбин, звук самого ветра является сильнее. Правда, стоит вспомнить и об исключении. Так, шумными являются старые агрегаты, которым уже более 20 лет. Да и современные турбины, расположенные на возвышенностях "тихими" назвать нельзя. В результате в холмистых местностях, где жилища располагаются на склонах или впадинах по направлению ветра от турбин, звук может распространяться дальше и быть более ощутимым. Однако для решения такого эффекта надо всего лишь при проектировании новой электростанции учесть расположение близлежащих домов, отступив от них на соответствующее расстояние. Те же машины, которые выпускаются сегодня, изначально спроектированы так, чтобы механические компоненты наименьшим образом шумели. Проектировщики стараются, чтобы оставался лишь наименьший шум от ветра, контактирующего с лопастями роторов.

Ближайшие к станции дома будут находиться в зоне "мерцания тени". Понятие "мерцание тени" означает процесс, который возникает при вращении лопастей турбинных лопастей между солнцем и наблюдателем. При этом возникает движущаяся тень. Однако мерцающая тень для домов, расположенных неподалеку от электростанции, проблемой никогда не является. Да и там, где это в принципе возможно, проблемы обычно легко решаются еще на стадии проектирования электростанции. Иногда мерцающая тень может раздражать тех, кто читает неподалеку или смотрит телевизор. Но такой эффект можно легко рассчитать, определив сколько именно часов в году это будет происходить. Это поможет легко определить проблему. Государство же предлагает ряд решений, чтобы сгладить последствия эффекта. Самое простое - планирование размещение станции и удаление ее от домов, другим способом может стать высадка деревьев.

Турбины генерируют помехи для телевизионных сигналов и других видов связи. Турбины могут создавать помехи в редких случаях, да и то их можно избежать. Большие ветровые установки, находящиеся на местности, могут становиться причиной помех телевидению или в радио, только если находятся в пределах прямой видимости. В современной ветровой энергетике используются различные методы для решения такой проблемы. Можно усовершенствовать антенну-приемник или же установить ретранслятор, который будет передавать сигнал в обход зоны расположения ветряков.

Внешний вид турбин довольно уродлив. Красота - понятие довольно субъективное. Для многих внешний вид турбин - величественен. У разработчиков планов ветровых станций есть инструменты для компьютерного моделирования, которые могут наглядно показать ее виртуальный вид с разных ракурсов. В итоге тщательное проектирование станции позволяет обычно решить проблемы уродливого внешнего вида.

От ветряных станций нет особой пользы для местных жителей, их собственность только уменьшается в цене. Никаких фактов того, что цена собственности снижается, если неподалеку находится коммерческая ветроэлектростанция, нет. В 2003 году в Америке проводились национальные исследования, которые специально изучали цены на недвижимость, расположенную около ветроэлектростанции. Оказалось, что наличие такого объекта не только никак не влияет на стоимость домов, но в некоторых случаях даже увеличивает ее.

Ветряные электростанции вредят туризму. Таких задокументированных свидетельств также обнаружено не было. Иногда ветровые турбины даже привлекают в эту местность гостей. Тогда местные власти сотрудничают с персоналом станции, чтобы устанавливать информационные доски и специальные указатели. Туристы уже на подъезде или близлежащих дорогах могут понять, где именно располагается такая необычная станция. Исследования показали, что для большинства туристов присутствие в местности ветровых установок не является поводом для отмены поездки. Так, в Палм Спрингз, Калифорния, установлены тысячи турбин. Они не только не отпугнули туристов, но даже и привлекли их. Здесь в гиды предлагают специальные автобусные туры для посещения ветровых установок.

Ветровые турбины опасные, ведь с лопастей может сорваться лед, что опасно для жизни людей. Иногда действительно может происходить падение льда, однако это не несет какой-либо опасности. Того удаления ветровых станций от мест постоянного проживания людей, которое обычно есть чтобы уменьшить звуковые эффекты, достаточно чтобы обеспечить и безопасность из-за падения льда. Да и большое намерзание льда на лопастях попросту невозможно. Ведь оно приводит к снижению скорости вращения лопастей. Турбина в результате будет отключена системой ее контроля.

Иногда с турбин срываются лопасти, а ветровые станции разрушаются. Сегодня ветровые турбины являются очень безопасными. Это позволяет их ставить даже около детских заведений, в сельских, городских и густонаселенных местах. Раньше действительно происходил срыв лопастей, но сегодня устройство турбин уже технически усовершенствованы. Все ветровые двигатели сертифицированы в соответствии с международными стандартами. Так, критерии, разработанные Germanischer Lloyd и Det Norske Veritas, включают в себя стандарты разной степени устойчивости к ураганам. Сегодня по всей Европе и Америке уже установлены тысячи ветровых турбин. Все они соответствуют самым высоким стандартам безопасности, которые гарантируют их надежную работу.

Ветровые турбины опасны для природы, из-за них погибает множество птиц и летучих мышей. Влияние растущей ветроэнергетики и ее распространение на птиц очень преувеличено. Оно значительно меньше другой обычной деятельности человека. Даже любое возможное развитие ветровой энергетики не окажет какого-либо воздействия на птиц. Ведь число смертей от установок такого типа составляет лишь малую часть от всего объема "человеческого фактора". Птицы гибнут от высотных зданий, домашних кошек, самолетов, строительства, экологических аварий. При этом проблема смерти пернатых из-за ветровых станций находится под особым вниманием. Так, на одной из самых старых объектов такого типа в Алтамонт Пасс, Калифорния, смерть хищных птиц является давней проблемой еще с 1980-х. Сотрудники этой станции постоянно работают вместе с официальными органами и экспертами по охране природы, чтобы максимально снизить опасное воздействие на пернатых. С 2003 года стали проводиться исследования по воздействию ветровых установок на летучих мышей. Ведь гибель этих млекопитающих в Западной Вирджинии в том же году привлекла внимание ученых и общественности. В ответ на это Национальная лаборатория по вопросам возобновляемой энергетики вместе с сообществом защиты летучих мышей до сих пор проводят исследования по взаимосвязи работы станций с гибелью этих животных. Такие исследования призваны уменьшить смертность, результаты работы постоянно публикуются. Хотя воздействие ветроэнергетики на популяции птиц и мышей невелико, промышленники серьезно относятся к вопросам потенциального взаимодействия с живыми существами. Помимо общих исследований на местах перед началом строительства объектов проводятся дополнительные изучения по воздействию на птиц. Стало уже общепризнанной практикой исследовать возможное воздействие на природу еще на этапе проектирования станции.

Ветровые электростанции разбивают на части зоны обитания диких животных. Обычно такие станции строятся около линий электропередач. Здесь ареалы обитания животных уже фрагментированы и изменены, тому причиной - развитое скотоводство и земледелие. Для самой станции требуется немного земли, чтобы разместить саму турбину, дорогу к ней и линии электропередачи. Земля же вокруг таких объектов может пользоваться и дальше в привычном режиме. Часто участки с пригодными ветровыми характеристиками находят на неосвоенных землях. Тогда фрагментация ареалов действительно может стать источником для беспокойства. Ведь луга и леса стоят все еще нетронутыми. Промышленность всячески поддерживает исследование этих мест, чтобы лучше понять возможное на них влияние. Надо сравнить возможное воздействие с тем, которое может наступить при отсутствии источников возобновляемой электроэнергии. Ведь это чревато глобальным потепление, выбросом загрязняющих веществ.

Ветровые турбины ненадежные и дорогостоящие, они не могут служить единственным источником энергии. Устройства сети таково, что для нее не требуется на каждый мегаватт, произведенный ветровой станцией, генерировать такое же количество энергии из других источников. Ни одна станция не может быть надежной на 100%, это сделало сеть такой, чтобы она имела больше источников, чем одновременно требуется. Такая сложная система была разработана специально, чтобы лучше реагировать на возможные прекращения работы одного из источников или же включения промышленных потребителей с высоким потреблением. В электросети таким образом существует довольно много переменных, которые учитываются оператором. Непостоянство ветроэнергетических установок является всего лишь одним из факторов работы всей сети. Есть ли вообще высоконадежные источники электроэнергии? Так, даже ядерные реакторы и угольные ТЭЦ отключаются с предупреждением незадолго до этого, чтобы провести техническое обслуживание или аварийный ремонт. Но ведь никто не стремится дублировать ядерные или тепловые станции такими же мощными объектами. Реалии таковы, что ветровая энергетика является надежной от природы. Ведь станции возводятся в ветреных местностях, модели сезонных движений воздуха где, могут быть спрогнозированы. В отличие от стандартных станций ветровые не надо полностью отключать при поломке или обслуживании. Если турбина неисправна, ее можно чинить, не отключая остальные установки от сети.

Ветровые турбины работают лишь малую часть времени. Оказывается, такие установки производят электричество большую часть суток, 65-80%. Естественно, время от времени меняется выдаваемая мощность. Но 100% своей мощности постоянно не может давать ни одна электростанция. Все они иногда закрываются на ремонт и техобслуживания или вырабатывают меньшую мощность ввиду отсутствия в данный момент спроса на электричество. Ветроэлектростанции возводятся на тех местах, где большую часть года дует ветер. Но колебания его ветра приводят к тому, что на производство максимальной мощности будет осуществляться лишь 10% времени. В итоге среднегодовое производство электричество будет составлять около 30% от номинальной мощности. Для станций на невозобновляемых источниках этот параметр колеблется от 0,4 до 0,8. Всего же для России в 2005 году общий коэффициент использования мощностей всех станций составил 0,5.

Ветровые турбины малоэффективны. Как раз наоборот, достоинством ветровых турбин является их эффективность. Наиболее простым способом определения общей эффективности технологии является общая эффективность. Оценивается количество потребляемой для производства энергии. Оказалось, что время возмещения для ветроэлектростанций практически не уступает показателям обычных объектов, местами даже превосходя их. Не так давно университет Висконсина провел исследование и обнаружил, что среднее возмещение энергии ветроэлектростанций Midwestern в 17-39 раз (зависит от текущей скорости ветра) больше потребленной энергии. А ведь для атомных станций этот параметр равняется 16, для угольных - 11. И в более широком смысле следует сказать об эффективности ветровых турбин. Ведь они производят электричество из природных источников, которые неисчерпаемы. При этом не наблюдаются социальные или экологические воздействия. Топлива не надо добывать, перевозить, отсутствует загрязнение окружающей среды. Нет проблем отходов, которые также надо куда-то везти и где-то хранить. Ветряные станции не усугубляют парниковый эффект, что свойственно ТЭЦ.

Ветровая энергия дорогая. Сегодня ветровая энергетика дает электричество такой же стоимости, как и новые станции, работающие на обычном топливе. Капитальные расходы на ветровые установки действительно более высокие, чем на традиционные источники энергии, к примеру, использующие газ. Но при этом отсутствуют и расходы на топливо, да и другие нормированные затраты (стоимость работы, технического обслуживания) такого направления энергетики оказываются в итоге конкурентными по отношению к другим источникам. Аналитики пришли к выводу, что ветроэнергетика снижает общую рыночную стоимость электричества. Ведь за последние 30 лет в Европе мощность турбин такого типа выросла почти в 300 раз, за это время стоимость производства уменьшилось на 80%. Каждые новые 5% рынка, отданные ветровой энергии, позволяют уменьшить стоимость электричества на 1%. За 5 последних лет ветроэнергетика в ЕС ежедневно давала 33 рабочих места. Этот рынок постоянно растет, только в России в 2013 году он будет составлять 3,1 млрд. евро, а в 2015 - 7 млрд. евро.

Для ветровой энергетики требуются дотации, в отличие от обычной. Аналитики Международного Энергетического Агентства оценили субсидирование на энергетику в Европе. Оказалось, что в 15 странах ЕЭС всего выделилось 29 миллиардов евро, из них на ветроэнергетику пришлось всего 19%. Этот показатель говорит о том, что такое направление попросту уравняли в правах с традиционными технологиями производства энергии.

Ветроустановки непригодны для общей сети, работая только в небольших автономных системах. Чтобы вся энергосистема начала зависеть от нестабильной выдачи мощности ветровыми станциями, надо, чтобы их доля была около 20-25% от всей мощности. К примеру, в России с существующими показателями и темпами такое соотношение может быть достигнуто не ранее, чем через 50 лет.

В мировом энергобалансе доля ветровой энергетики незначительна. В 2010 году количество произведенной энергии станциями этого типа составило 2,5% от всего объема. Энергия ветра высоко ценится, к примеру, в Дании уже 20% электричества вырабатывается таким способом, а в Германии - 8%. Планы развития этого направления огласили Китай, Индия, Япония, Франция. Темпы развития ветровой энергетики позволяют предположить, что к 2020 году доля этой отрасли составит 10% от общего объема.

Ветровая энергетика само по себе нестабильна и не так предсказуема, как другие виды. Энергия поступает нестабильно, что требует постоянное ее резервирование и аккумулирование. Для решения проблем такой нестабильности есть свои варианты. Сегодня с точностью 95% составляются прогнозы почасовой выдачи энергии в течении дня. Этот высокий показатель планирования позволяет улучшить качество работы и надежность станций. Чтобы оценить стабильность работы системы станций такого типа, группа ученых университетов Делавэр и Стони-Брук создала виртуальную систему объектов. Они располагались по всему восточному побережью США на отдалении от берега. Оказалось, что такая система может служить надежным источником энергии. Хотя ветровые установки и имеют высокий потенциал, меняющаяся погода все же может снижать их потенциал. Ученые предлагают объединять в единую сеть удаленные друг от друга группы ветрогенераторов, чтобы сглаживать колебания ветра на участках. Однако точные расчеты пока еще не сделаны. В ходе исследования были рассмотрены данные, полученные от 11 автоматических станций наблюдения за погодой за 5 лет. Они располагались на протяжении 2500 километров между Флоридой и Мэном. Оказалось, что за это время, при условии объединения станций в единую сеть, поступление электричества полностью никогда бы не прекращалось. Мощность всей системы колебалась бы не так сильно, как у отдельной установки. Если та могла за час измениться на 50%, то для всей сети скачок в принципе не мог превысить 10% в час. Участники исследования пришли к выводу, что этот "нестабильный" источник энергии на самом деле является довольно надежным при правильной работе с ним.

Использование энергии ветра - одно из перспективных направлений современной энергетики. Последние годы наблюдается массовое увеличение размеров и количества ветропарков во всех прогрессивных странах мира. «Ветряки» становятся выше, а их лопасти длиннее и легче, что позволяет им работать даже при небольшой силе ветра. Сооружения устанавливаются повсеместно: в лесах, полях, на побережьях, в прибрежных водах морей и океанов (оффшорные парки). Даже в густонаселенных мегаполисах архитекторы умудряются внедрить ветрогенераторы в конструкции небоскребов, переведя их на частичное самообеспечение.

Для координации усилий и быстрого реагирования на изменения запросов рынка ветровой энергии создана международная некоммерческая организация WWEA (World Wind Energy Association) со штаб-квартирой в Германии. Сегодня ассоциация объединяет интересы более чем сотни стран-участниц. Задачей WWEA является постоянный мониторинг потребностей и предложений в области возобновляемой энергетики, проведение исследований и предоставление консультаций заинтересованному сообществу.

Ассоциация отслеживает развитие ветроэнергетической отрасли во всех странах и составляет рейтинг ведущих потребителей и поставщиков соответствующего оборудования. В соответствии с информацией, опубликованной на сайте организации 10 февраля 2016 года, лидерами в использовании альтернативной энергетики является следующая десятка стран.

Десять стран с самой развитой ветроэнергетикой в 2015 году

Китай. Суммарная выработка электроэнергии в ветропарках Китая в конце 2015 года приблизилась к 150 ГВт. При этом страна является относительно новым игроком на рынке ветроэнергетики. Но темпы роста промышленности диктуют свои условия, поэтому в ближайшие годы планируется дальнейшее наращивание ветроэнергетического потенциала страны. Заявленная страной цифра потребления ветровой энергии к 2020 году составляет 200 ГВт, однако, судя по ежегодному приросту 25-28%, этот срок наступит раньше.

США. Развитие альтернативной энергетики, в том числе - ветровой, в Соединенных Штатах - постоянный, планомерный процесс. К началу 2016 года суммарная мощность американских ветропарков оценена в 74,35 ГВт. В силу довольно жесткой регуляторной политики, проводимой властями в энергетической области, в стране не наблюдается ярко выраженного бума строительства «ветряков», однако страна продолжает уверенно удерживать второе место.

Германия является традиционным лидером в производстве ветровых турбин. Все самое инновационное оборудование в этой отрасли производится здесь. Общая мощность собственных ветроэлектростанций Германии - на текущий момент - 45,2 ГВт, что составляет около трети суммарной производительности ветропарков всего Евросоюза. Прирост доли энергии, вырабатываемой «ветряками» в стране в 2015 году составил почти 10%.

Испания занимает 4-е место в рейтинге стран с самой развитой ветроэнергетикой. В условиях угнетенного состояния экономики и нехватки собственных природных ресурсов альтернативные виды энергии являются стратегическим направлением развития страны. Суммарная мощность ветроэлектростанций страны составляет порядка 23 ГВт. В соответствии с данными WWEA за 2015 год в стране не наблюдалось существенного прироста доли энергии, вырабатываемой «ветряками».

Индия , переживающая бурный рост промышленности, одновременно с этим испытает острую нехватку энергетических ресурсов. Жесткий дефицит традиционных источников в значительной степени сформировал взгляды государства на альтернативные виды получения энергии. Сегодня индийские ветропарки находятся на 5-м месте в мире по суммарной мощности с показателем, приближающимся к 25 ГВт. За 2015 год прирост доли ветровой энергии в стране составил около 10%.

Развитие ветроэнергетики в таких странах ЕС, как Великобритания , Италия, Франция связано, в первую очередь, с постепенным отказом от использования атомной энергии. Страны не только занимаются активным строительством ветропарков, но также являются ведущими разработчиками и производителями турбинного оборудования, наряду с Германией. По состоянию на конец 2015 года мощности ветропарков составляют: Британия - 13,6 ГВт, Франция - 10,3 ГВт, Италия - 8,95 ГВт.

Власти Канады способствуют внедрению альтернативных источников энергии путем предоставления льгот на установку и модернизацию соответствующего оборудования. Одни из передовых в этом отношении - штаты Онтарио и Новая Шотландия. На сегодняшний день суммарная мощность ветрогенерационных парков Канады составляет 11,2 ГВт, а прирост мощности в сравнении с 2014 годом составил 15,6%.

В Бразилии ветропарки уже несколько лет являются неотъемлемой частью энергетической системы, наряду с солнечными станциями. Закупка электроэнергии государством производится путем проведения открытых аукционов, результаты которых подтверждают конкурентоспособность энергии, вырабатываемой «ветряками». Средняя стоимость киловатт-часа электричества для потребителя в Бразилии составляет порядка 0,05 доллара. В течение 2015 года страна показала абсолютный мировой рекорд по приросту ветроэнергетических мощностей, который составил 46,2%! Сегодня суммарная мощность ветроэлектростанций Бразилии составляет 8,7 ГВт.

Дания. В силу своих небольших размеров страна не может конкурировать по общему количеству производимой «ветряками» энергии с такими гигантами как Китай и США. Общая мощность ветропарков Дании составляет 5 ГВт, поэтому в первую десятку рейтинга она не входит. Однако при пересчете количества киловатт ветровой энергии на душу населения, Дания является несомненным мировым лидером. Сегодня доля ветроэнергетики в общем энергетическом «котле» страны приближается к 30%, а к 2020 году планируется довести этот показатель до 50%. Также власти страны обнародовали программу, в соответствии с которой к 2050 году страна откажется от использования традиционных энергоресурсов полностью.

Самые мощные ветропарки в мире

Приведенные выше цифры показывают, что сегодня ветровая энергетика уже занимает значительную часть энергетической отрасли во всем мире. При этом в перспективе доля электроэнергии, вырабатываемой «ветряками» будет постоянно расти. В настоящее время крупнейшими поставщиками электроэнергии являются следующие ветропарки:

  • Ветропарк Alta Wind, Калифорния, США, производящий 1,55 ГВт чистой электроэнергии. Комплекс продолжает развиваться и уже к 2040 году планируется прирост его мощности до 4,0 ГВт;
  • ветроэнергетический комплекс Ganzu, расположенный на западе Китая и состоящий из нескольких крупных ветропарков, суммарная производительность которых составляет более 5 ГВт. В соответствии с планом развития, к 2020 году планируется наращивание мощностей до 20,0 ГВт;
  • Британский оффшорный массив London Array, расположенный дельте Темзы, - крупнейший проект такого рода. В настоящее время ветропарк на воде генерирует 0,63 ГВт электроэнергии. Суммарное количество электроэнергии, вырабатываемое всеми оффшорными ветроэлектростанциями Британии, составляет 3,6 ГВт. Предполагается, что к 2020 году этот показатель будет составлять 18,0 ГВт;
  • крупнейший ветропарк Индии, Jaisalmer, генерирующий более 1 ГВт электроэнергии. Владелец ветропарка, компания Suzlon Energy, также является и производителем оборудования, занимающая на мировом рынке ветровых турбин около 7%.

Основные игроки на рынке ветрогенерационного оборудования в 2015 году

До недавнего времени лидерами в производстве «ветряков» считались европейские страны Германия и Дания, а также Соединенные Штаты Америки. Наиболее востребованные ветрогенерационные установки выпускались под марками Vestas (Дания) и Enercon (Германия). Эти компании занимаются выпуском турбин мощностью от 0,8 до 7,5 МВт. Американские ветрогенераторы General Electric имеют максимальную мощность 3,6 МВт.

В последний год рекордную прибыль показали китайские производители. В частности, чистая прибыль компании Goldwind за 2015 год выросла почти на 56%, достигнув показателя 436 млн. USD. Общая мощность реализованных за год ветрогенераторов Goldwind составляет 7,8 ГВт. Однако утверждать, что традиционному доминированию Vestas и GE на мировом рынке положен конец нельзя, так как своим блестящим результатам Goldwind обязан, прежде всего, внутреннему рынку Китая.

Общая мощность установленных турбин Vestas в 2015 году составила 7,3 ГВт. Для американцев GE этот показатель равен 5,9 ГВт. Немецкий производитель Enercon занимает в рейтинге четвертое место. Помимо Goldwind в десятку крупнейших производителей «ветряков» в 2015 году вошли еще 4 компании из Китая.

Ветроэнергетика России

Возможности России в генерации ветровой энергии (которые в настоящее время практически не используются) оцениваются в 30% от общего электроэнергетического потенциала страны. Суммарный показатель мощности ветропарков России, который планируется достигнуть к 2020 году составляет 3 ГВт.

В настоящее время крупнейшие ветропарки России расположены в Крыму (общей мощностью около 60 МВт), в Калининградской области (5 МВт), на Чукотке и в Башкортостане (по 2,2 МВт). В различной степени готовности находятся проекты ветроэлектростанций мощностью от 30 до 70 МВт в Ленинградской, Калининградской областях, в Краснодарском крае, в Карелии, на Алтае и Камчатке.

В самом ближайшем будущем планируется строительство ветропарка мощностью 35 МВт в Ульяновске. В июне 2016 года Российская ассоциация ветроиндустрии планирует провести конкурс проектов ветропарков суммарной мощностью 1,6 ГВт.

Отрицательные стороны ветроэнергетики

Сегодня никто не сомневается, что ветроэнергетика - один из наиболее перспективных видов получения «чистой», «зеленой» энергии. Помимо сокращения выбросов углекислого газа, который является обязательным атрибутом «традиционных» ТЭС и ТЭЦ, использование «ветряков» позволяет добиться значительного снижения электроэнергии для потребителя, а период окупаемости оборудования составляет 7-8 лет.

Однако у ветровой энергетики есть и отрицательные стороны. В первую очередь - это зависимость от силы ветра, в результате чего поступления сгенерированного электричества в общую сеть происходят неравномерно. Поэтому полностью отказаться от использования традиционных ГЭС и ТЭС на данном этапе развития альтернативной энергетики не представляется возможным, так как они необходимы для стабилизации работы сетей.

Вторым отрицательным фактором является то, что география возможного расположения «ветряков» очень часто не совпадает с географией потребителей. Данная проблема решается путем реконструкции или полного перекроя энергосистемы, что, в свою очередь связано со значительными временными и финансовыми затратами.

Кроме этого необходимо сказать и о том, что мощные ветропарки также оказывают воздействие на окружающую среду: нагревают почву и влияют на микроклимат. Исследования, проведенные в США, показали, что прирост среднесуточной температуры на территории крупной ветрогенерационной станции за 9 лет составил 0,72 градуса Цельсия. При этом ученые связывают такой температурный скачок с тем, что в период проведения исследований с 2003 по 2011 годы, количество «ветряков» на станции возросло с 111 до 2358 штук. По их мнению, при стабильном количестве установок прирост температуры также должен замедлится.

Доктор физико-математических наук Александр Соловьёв, Кирилл Дегтярёв (Научно-исследовательская лаборатория возобновляемых источников энергии географического факультета МГУ им. М. В. Ломоносова).

Фото Игоря Константинова.

Промышленная ветровая электростанция, построенная в 1931 году в Крыму, спроектирована в ЦАГИ и была на тот момент крупнейшей в мире - её мощность 100 кВт. Во время Великой Отечественной войны она была разрушена.

Темпы роста установленных мощностей ветроэлектростанций.

Рост установленных мощностей ветроэлектростанций по ключевым регионам. Источник: Global Wind Energy Council.

Высота некоторых ветрогенераторов достигает сотен метров. На фото: установка одной из турбин ветропарка Медвежья Гора (Bear Moun-tain) в провинции Британская Колумбия в Канаде. Одна такая ветроустановка обеспечивает электроэнергией 300 домохозяйств.

Оффшорный ветропарк в Дании близ Копенгагена. Размещение ветрогенераторов в море - неплохое решение проблемы нехватки площадей для строительства мощных ветроэлектростанций. Кроме того, благодаря морскому бризу ветряки работают 97% времени.

Уровень шума от различных источников. Источник: Ермоленко Б. В., Ермоленко Г. В., Рыженков М. А. Экологические аспекты ветроэнергетики // Теплоэнергетика, 2011, № 11.

Годовая оценка смертности птиц в Европе. Источник: European Wind Energy Association, 2010.

Ветер относят к возобновляемым, или альтернативным, источникам энергии. Его преимущества очевидны: ветер дует всегда и везде, его не надо «добывать». Общие запасы энергии ветра в мире оценены в 170 трлн кВт·ч, или 170 тыс. тераватт-часов (ТВт·ч), в год, что в восемь раз превышает нынешнее мировое потребление электроэнергии. То есть теоретически всё электроснабжение в мире можно было бы обеспечить исключительно за счёт энергии ветра. А если вспомнить, что её использование не загрязняет атмосферу, гидросферу и почву, то этот источник энергии и вовсе кажется идеальным. Но, увы, всё имеет оборотную сторону, и ветроэнергетика не исключение.

Использование энергии ветра - давняя история: сколько лет ветряным мельницам и парусным судам? Да и ветроэлектростанции начали строить ещё в начале прошлого века. Следует отметить, что одним из лидеров в этой области в 1930-1950-е годы был Советский Союз. В далёком 1931 году в Крыму, около Балаклавы, была введена в эксплуатацию ветроэлектростанция, которая работала до 1941 года. Во время боёв за Севастополь она была полностью разрушена. Опорную конструкцию ветродвигателя (мачту) построили по проекту Владимира Григорьевича Шухова. Ветроагрегат с колесом диаметром 30 м и генератором в 100 кВт был на тот период самым мощным в мире. Ветроагрегаты в Дании и Германии того времени имели диаметр колеса до 24 м, а их мощность не превышала 50-70 кВт.

В 1950-1955 годах в СССР производилось 9000 ветроустановок в год. Во время освоения целины в Казахстане была построена первая многоагрегатная ветроэлектростанция, работавшая в паре с дизельным двигателем, общей мощностью 400 кВт, ставшая прообразом современных европейских ветропарков и систем «ветро-дизель». Интересный факт приводится в автобиографической трилогии чукотского писателя Юрия Рытхэу «Время таяния снегов». В его родном стойбище Улак электрическое освещение появилось в конце 1930-х годов именно благодаря ветродвигателю, который обеспечивал электроэнергией и соседнюю полярную станцию.

Тем не менее активное развитие ветро-энергетики в мире началось лишь в 70-е годы прошлого столетия. Предпосылками к нему стали обострившиеся экологические проблемы (загрязнение атмосферы из-за работы ТЭС, кислотные дожди и т.д.) в сочетании с ростом цен на нефть и желанием ослабить зависимость западных стран от поставок углеводородов из СССР и стран третьего мира. Нефтяной кризис 1973-1974 годов дал дополнительный стимул ветроэнергетике и вывел вопрос о её развитии на государственно-политический уровень.

Тем не менее отношение к ветроэнергетике было (и остаётся) неоднозначным, - наряду с энтузиазмом присутствовали скепсис и недовольство, в том числе, как ни странно, связанные с экологическими аспектами. Вот один из примеров того, что писала по этому поводу зарубежная пресса в 1994 году: «Возникают и неприятные парадоксальные ситуации, когда люди недовольны строительством ветровых станций и часто блокируют их именно из экологических соображений - группы станций создают шумовое и визуальное загрязнение местности».

Подобные претензии к ветроустановкам звучали, например, в Нидерландах, где ветростанции, по мнению общественности, нарушали традиционный облик территории, да и размещать тысячи турбин в стране с высокой плотностью населения, по мнению критиков, негде.

С тех пор общая установленная мощность ветроэлектростанций в мире выросла в 60-75 раз. Появились огромные конструкции, поднятые на высоту в сотни метров. Мощности отдельных ветрогенераторов достигают нескольких мегаватт, гигаваттные ветропарки сопоставимы с крупнейшими объектами «традиционной» энергетики - тепловой, атомной и гидроэнергетики.

В 2012 году установленная мощность ветроэлектростанций в мире достигла 282 ГВт, что превышает суммарную мощность всех электростанций России и сопоставимо с мощностью всех АЭС на планете. Однако дают они только около 2,4% всей мировой электроэнергии, хотя в отдельных европейских странах, например в Дании или Испании, их доля приближается к 20%. То есть ветроэнергетика так и не стала преобладающей в общей системе выработки электроэнергии в мире. Да и на все остальные возобновляемые нетрадиционные источники энергии, включая энергию приливов и отливов, солнца, геотермальную энергию, пришлось всего 3,7%.

После нескольких десятилетий роста, мощной информационной и финансовой поддержки возобновляемой энергетики картина могла бы быть и более впечатляющей. Ведь в Европе и США производители «зелёной» энергии поддерживаются на государственном уровне. В частности, в портфеле энергосбытовых компаний должна быть обязательная доля энергии возобновляемых источников - только в этом случае гарантируется сбыт. К тому же во многих странах для производителей возобновляемой энергии действуют налоговые льготы. Между тем после бурного роста числа ветровых генераторов энергии в последние полтора десятилетия отмечается его некоторое замедление: в 2011-2012 годах темпы ввода в эксплуатацию установленных мощностей ветроэнергостанций были самыми низкими за последние 16 лет.

Особенно это заметно в Европе. Возможно, подобное замедление связано с разразившимся экономическим кризисом, но вероятна и другая причина - территориальные «ресурсы» Старого Света близки к исчерпанию, то есть ветроэнергоустановки в Европе уже просто негде строить. По данным агентства Bloomberg New Energy Finance, в 2012 году инвестиции в возобновляемую энергетику в мире в целом сократились на 11%, при этом они продолжали расти в азиатских странах. Следует добавить, что 15 лет назад более половины всех ветроэнергетических мощностей мира приходилось на США, затем резко вырвалась вперёд Европа, и в последние годы лидерство захватил Китай.

Хорошо, да недёшево

Ветроэлектростанции явно отстают от АЭС и ГЭС по коэффициенту использования установленной мощности. Если для АЭС он составляет 84%, для ГЭС - 42%, то для ветроэлектростанций - лишь 20%, что обусловлено характером самого источника энергии: ветер дует с достаточной силой далеко не всегда. То есть ветроэлектростанции в 2-4 раза менее продуктивны, чем электростанции традиционных типов, и для получения такого же количества электроэнергии их надо построить в 2-4 раза больше. Это дополнительные площади и материалы, а значит, больший экологический ущерб (в чём бы он ни заключался) в пересчёте на киловатт произведённой электроэнергии.

По информации Российской ассоциации ветроиндустрии (РАВИ), металлоёмкость современного ветрогенератора мощностью 3 МВт достигает 350 тонн. Если ТЭС в 1 ГВт требует площади порядка нескольких гектаров, то под ветропарк такой же мощности приходится отводить уже тысячи гектаров. И хотя на территории ветропарка можно вести и другую хозяйственную деятельность и даже жить, в действие вступают отношения собственности - требуется выкуп либо аренда большого участка земли.

Стоимость строительства ветроэлектростанции порядка 1500-2000 долларов на 1 кВт установленной мощности, что сопоставимо с затратами на строительство АЭС и в несколько раз выше инвестиционных затрат на строительство ТЭС. Агрегаты высокой мощности - с большой высотой мачты и большим диаметром лопастей, работающие в условиях сильных ветров и морозов, нуждаются в повышенной надёжности, а значит, требуют дополнительных затрат на строительство и обслуживание.

Себестоимость 1 кВт электроэнергии, производимой на ветроэлектростанции, тоже в реальности не равна нулю. Европейский опыт показывает, что суммарные эксплуатационные издержки 0,6-1 евроцент на 1 кВт·ч, а для машин со сроком эксплуатации выше 10 лет издержки возрастают до 1,5-2 евроцента на 1 кВт·ч. Соответственно это 24-40 и 60-80 копеек на 1 кВт·ч. Для сравнения, затраты на выработку 1 кВт·ч на ГЭС и АЭС - порядка нескольких копеек, на ТЭС - при нынешнем уровне цен на углеводороды - около 1 руб./кВт·ч.

Так что о «возобновляемости» тех или иных источников энергии приходится говорить с большой долей условности. Ведь на создание энергетических объектов, использующих эти источники, приходится тратить невозобновляемые материалы (в частности, металлы), добыча и обработка которых далеко не всегда экологически безупречны.

Что касается развития крупномасштабной ветроэнергетики, то оно тормозится прежде всего из-за упомянутых выше высокой металлоёмкости, сложности конструкций ветроэнергоустановок, потребности в больших площадях, низкой продуктивности и недостаточной стабильности работы. Кроме того, под угрозой могут оказаться такие стимулы развития ветроэнергетики, как исчерпание запасов углеводородного сырья и антропогенное потепление климата. Есть много данных, что запасы углеводородов велики, а роль человека в глобальном изменении климата, да и само изменение климата - вопросы дискуссионные.

Тем не менее ветер, как и другие альтернативные источники возобновляемой энергии, остаётся относительно перспективным. Правда, по прогнозам специалистов, в ближайшие десятилетия «первую скрипку» в мировой альтернативной энергетике начнёт играть солнечная, а не ветряная энергия. Преимущества солнечной энергетики понятны - это в перспективе более компактные и менее материалоёмкие системы, а солнце - относительно стабильный и предсказуемый источник энергии.

Ветряками - по экологии?

Экологи предъявляют немало претензий к ветроэнергетике. Это создаваемые при работе лопастей шум, инфразвуковые колебания и вибрации, отрицательно действующие на людей, технику и животных. Ветряки не просто нарушают привычные, милые глазу пейзажи, огромные вращающиеся лопасти воздействуют на психику человека. В районе ветропарков перестают селиться животные и птицы. Есть риски, связанные с отрывом лопастей и другими авариями на крупных ветроэлектростанциях. Кроме того, при работе множества ветрогенераторов на больших площадях возможно локальное снижение силы и изменение конфигурации ветров. Дополнительную проблему создаёт необходимость утилизации лопастей, исчерпавших свой ресурс.

Какие из этих недостатков и рисков мнимые и какие реальные, подсказывает двадцатилетний опыт использования энергии ветра в густонаселённой Европе. Так, не подтверждаются опасения, связанные с инфразвуком и работой лопастей, - об этом говорят проведённые оценки уровня шума и смертности птиц, из которых видно, что шум на расстоянии 350 м от ветростанции лишь чуть превышает фоновый. А количество птиц, погибших от столкновения с ветряками, в три с половиной тысячи раз меньше, чем, например, от встречи с кошками.

Конечно, в подобных оценках есть нюанс: многое зависит от числа ветроэлектростанций. При существующем количестве ущерб действительно минимален, но что произойдёт, если ветроагрегатов станет значительно больше?

Кроме того, при сравнительной оценке количества гибнущих птиц надо учитывать, о каких видах идёт речь. Кошки охотятся на воробьиных, а при столкновениях с ветроэлектростанциями на достаточно больших высотах могут гибнуть более редкие и ценные виды пернатых. Не следует сбрасывать со счетов и нарушение миграционных маршрутов птиц.

Тем не менее суммарный экологический ущерб от ветроэнергетики существенно ниже по сравнению с «традиционными» способами генерации энергии. В Европе внешний негативный социально-экологический эффект на 1 кВт·ч произведённой электроэнергии оценён в 0,15 цента для ветроэнергетики, 1,1 цента - для газовых ТЭС и 2,5 цента - для угольных.

Исключение составляет проблема утилизации лопастей ветрогенераторов, выполненных из композитных материалов. Дело в том, что срок службы лопастей 20-25 лет и первые из построенных уже близки к выработке ресурса. Особо остро с этой проблемой придётся столкнуться уже в 2020 году, когда общая масса отработанных лопастей в мире составит 50 000 тонн, а к 2035 году вырастет до 200 000 тонн.

На данный момент используются два основных способа утилизации лопастей, сделанных из стеклопластика: механический и термический. Первый метод предполагает механическое измельчение волокон и гранул, составляющих композитный материал лопастей, которые затем используют в качестве сырья для производства низкосортной продукции. Однако в большинстве случаев выработавшие ресурс турбины подвергают термической обработке, то есть сжигают. Это явно «антиэкологичный» способ утилизации, который тем более абсурдно выглядит на фоне заявлений об «экологически чистой» ветроэнергетике. При этом зольность сжигаемой массы (доля негорючего неорганического остатка в общей массе материала) около 60% и образующаяся зола требует захоронения.

Специалисты РХТУ им. Д. И. Менделеева считают, что для переработки лопастей более перспективен пиролиз (нагревание без доступа кислорода при 500°С). Полученные вещества (пиролизат) можно использовать для производства пеностекла и стеклоблоков, а образующийся при пиролизе газ сжигать для получения электроэнергии.

Российские перспективы

В настоящее время суммарные установленные мощности ветроэнергоустановок в России не превышают нескольких десятков мегаватт, а доля ветроэнергетики в общем объёме производства электроэнергии ничтожна. В то же время реализуются несколько крупных проектов, прежде всего в степных районах юга страны и прибрежных зонах. Вероятно, в ближайшие годы ситуация с ветроэнергетикой может заметно измениться.

Большие пространства, сравнительно низкая плотность населения и хозяйственных объектов существенно снижают экологические риски работы ВЭС в России по сравнению с европейскими странами. Одновременно большие расстояния и слабо развитая транспортная инфраструктура затрудняют развитие ветроэнергетики и создают дополнительные трудности в обслуживании ветроагрегатов и ветростанций.

Другая, достаточно очевидная причина слабого развития ветроэнергетики в России - наличие больших запасов углеводородов, более дешёвого энергетического сырья. Как упоминалось выше, открытие и разработка крупных месторождений нефти и газа лишили СССР, который был когда-то одним из мировых лидеров в ветроэнергетике, стимулов развития в этой области. Тем не менее расхожее мнение, что нам не нужна альтернативная энергетика (и ветроэнергетика, в частности), не имеет под собой оснований. Нефтегазовое изобилие нашей страны не стоит преувеличивать, а нынешний уровень энерговооружённости недостаточен для полноценного социально-экономического развития, что требует поиска новых источников энергии. Российские потребители сталкиваются с дороговизной подключения к энергосетям, и для них выгоднее использовать местные возобновляемые ресурсы, в том числе энергию ветра. Кроме того, более 70% территории нашей страны, на которой проживает около 20 млн человек, находится вне системы централизованного энергоснабжения.

Нельзя сбрасывать со счетов, что наша страна обладает самым большим в мире ветроэнергетическим потенциалом - порядка 40 млрд кВт·ч электроэнергии в год. А это значит, что эксплуатация крупных и особенно малых ветроэнергоустановок на огромных российских пространствах могла бы быть эффективней. Районы Российского Севера, и в частности Обская губа, Кольский полуостров, бо́льшая часть прибрежной полосы Дальнего Востока, по мировой классификации относятся к самым ветреным зонам. Среднегодовая скорость ветра на высотах 50-100 м, для которых производятся современные ветроагрегаты, составляет 11-12 м/с, что вдвое превышает так называемый экономический порог ветроэнергетики, связанный с окупаемостью ВЭС.