Человечество, возможно, стоит на пороге создания искусственного интеллекта. Проект «Будущее за углом»: человечество, возможно, стоит на пороге создания искусственного интеллекта

Стюарт Рассел

Что такое искусственный интеллект?

ИИ - это исследование того, как сделать машины действующими разумно. Грубо говоря, компьютер разумен в тех пределах, в которых он делает правильные вещи, а не неправильные. Правильным действием считается такое, которое позволяет с наибольшей вероятностью достичь цели. Или, выражаясь техническим языком, действие, которое максимизирует ожидаемую полезность. Создание искусственного интеллекта (ИИ) включает в себя решение проблем машинного обучения, рассуждения, планирования, восприятия, понимания языков, а также робототехники.

Распространённые заблуждения

    ИИ - это конкретная технология. Например, в 1980-е и 1990-е годы часто приходилось видеть статьи, в которых ИИ приравнивался к экспертным системам (основанным на наборах правил); в 2010-х годах ИИ приравнивали к нейронным сетям (в основном, многослойным сверточным). Это примерно как подменять изучение физических законов - проектированием паровых машин. Исследования ИИ относятся к общей проблеме создания интеллекта в машинах; ИИ - не какой-то особый технический продукт, возникший в результате исследования данной проблемы.

    ИИ - это особый класс технических подходов. Например, часто приходится видеть авторов статей, считающих, что ИИ должен быть основан на логическом или символьном подходе и противопоставляют этому, например, нейронные сети или генетическое программирование. ИИ - это не подход, это проблема. Любой подход к решению проблемы считается вкладом в развитие ИИ.

    ИИ - это особое сообщество исследователей. Данное утверждение связано с предыдущим заблуждением. Некоторые авторы используют термин «вычислительный интеллект», упоминая некое якобы обособленное сообщество исследователей, использующих нейронные сети, нечеткую логику, генетические алгоритмы. Такой подход крайне неудачен, поскольку побуждает исследователей опираться только на те методы, которые приняты в их сообществе, а не на те, которые имеют смысл для поставленной задачи.

    ИИ - это просто алгоритм. Строго говоря, такое мнение не является заблуждением, поскольку системы ИИ, как и компьютеры для любых других применений, построены на основе алгоритмов (которыми в широком смысле можно считать программы). Однако род задач, решаемых с помощью ИИ, имеют тенденцию сильно отличаться от традиционных алгоритмических задач, таких как сортировка списков чисел или извлечение квадратных корней.

Каким образом ИИ будет приносить пользу обществу?

Всё, из чего состоит цивилизация, является продуктом нашего разума. ИИ позволяет расширить наши интеллектуальные возможности различными способами, подобно тому, как подъемные краны позволяют нам передвигать сотни тонн груза, самолеты позволяют нам перемещаться на со скоростью в несколько сотен километров в час, а телескопы позволяют нам наблюдать объекты на расстоянии в триллионы миль. Системы ИИ, спроектированные должным образом, позволят реализовывать человеческие ценности в гораздо большем масштабе.

Распространенные заблуждения

    ИИ обязательно приведет к бесчеловечности. Во многих антиутопичных сценариях описывается, как злодеи используют ИИ для того, чтобы контролировать общество различными способами: слежкой, роботами-полицейскими, автоматизированным «правосудием» или командно-административной экономикой. Хотя такие варианты будущего несомненно возможны, большинство людей не будет поддерживать их. С другой стороны, ИИ предоставляет людям лучший доступ к знаниям и индивидуальному обучению; устраняет языковые барьеры; ликвидирует бессмысленную и однообразную тяжелую работу, низводящую людей до положения… эээ… роботов.

    ИИ обязательно усилит социальное неравенство. Вполне возможно, что всё бо́льшая и бо́льшая автоматизация труда приведет к тому, что прибыли и богатства будут концентрироваться в руках все меньшего и меньшего числа людей. Однако у нас есть выбор в том, как именно использовать ИИ. Например, ИИ может способствовать взаимовыгодному сотрудничеству, связывать производителей с потребителями, что позволит большему количеству отдельных людей и мелких групп напрямую участвовать в экономике вместо того, чтобы зависеть от крупных корпораций-работодателей.

Что такое машинное обучение?

Это раздел ИИ, который изучает способы, которые позволят компьютерам повышать эффективность своих действий с помощью накопленного опыта.

Распространенные заблуждения

    Машинное обучение - это новая область, которая большей частью заменила ИИ. По-видимому, данное заблуждение - неожиданный побочный эффект недавнего роста интереса к машинному обучению, в результате которого в на курсы машинного обучения поступают студенты, не имевшие раньше дела с ИИ. Машинное обучение всегда было центральной темой ИИ: Тьюринг в статье 1950 г. утверждал, что обучение - это наиболее вероятный путь к ИИ, а самый успешный ранний ИИ, шахматная программа Артура Самуэля, был создан с использованием машинного обучения.

    Машины не могут учиться, они делают только то, что программисты приказали им делать. Программист может приказать машине учиться! Самуэль был отвратительным шахматистом, но его программа быстро научилась играть намного лучше его. В наши дни многие важные системы ИИ построены методом машинного обучения на основе больших объемов данных.

Что такое нейронная сеть?

Нейронная сеть - вид вычислительной системы, которая имитирует свойства нейронов в живых организмах. Нейронная сеть построена из множества отдельных элементов, каждый из которых получает входной сигнал от одних элементов и посылает выходной сигнал другим элементам. (Эти элементы необязательно должны существовать физически, они могут быть компонентами компьютерной программы.) Выходной сигнал искусственного нейрона обычно вычисляется, исходя из взвешенной суммы входящих сигналов, причем она подвергается некой простой нелинейной трансформации. Ключевым тут является то, что вес каждой из межнейронных связей может быть откорректирован на основе полученного опыта.

Распространенные заблуждения

    Нейронная сеть - это новый вид компьютеров. Практически все нейронные сети моделируются на обычных компьютерах, предназначенных для общих целей. Мы можем построить специализированные компьютеры (их иногда называют нейроморфическими) для более эффективного моделирования нейронных сетей. До сих пор нейроморфические компьютеры не продемонстрировали достаточных преимуществ, чтобы оправдать их более высокую стоимость и затраты времени на конструирование.

    Нейронные сети действуют так же, как и мозг. Реальные нейроны - это гораздо более сложные образования, чем те простые элементы, которые используются в искусственных нейронных сетях. В природе существует много различных типов нейронов и связи между нейронами могут с течением времени меняться; помимо коммуникации между нейронами, мозг задействует и другие механизмы для корректировки поведения; и так далее.

Что такое глубинное обучение?

Глубинное обучение - отдельный вид машинного обучения, при котором обучаются нейронные сети, состоящие из многих слоев. Глубинное обучение стало очень популярным за последние годы и привело к существенному прогрессу в решении таких задач, как распознавание речи и визуальных объектов.

Распространенные заблуждения

  • Глубинное обучение - это новая область, которая в значительной мере вытеснит машинное обучение. Сообщество исследователей нейронных сетей занимается глубинным обучением уже больше двадцати лет. Недавние успехи достигнуты за счет относительно малого усовершенствования алгоритмов и моделей, а также за счет доступности объемных наборов данных и гораздо более мощных наборов компьютеров.

Что такое сильный и слабый ИИ?

Термины «сильный ИИ» и «слабый ИИ» были введены философом Джоном Сёрлом в отношении к двум различным гипотезам, выдвинутым, по его мнению, исследователями ИИ. Согласно гипотезе слабого ИИ, машины можно запрограммировать таким образом, что они будут вести себя как имеющие интеллект человеческого уровня. Согласно гипотезе сильного ИИ, подобные машины можно считать имеющими сознание и описывать их как действительно думающих и рассуждающих, используя эти слова в том же смысле, который применяется к людям.

Распространенные заблуждения

  • «Сильный ИИ» означает исследования ИИ, целью которых служит универсальный ИИ человеческого уровня. Это допустимая интерпретация термина «сильный ИИ», хотя это не то, что он означал при своем появлении в 1980 г. Аналогично, «слабый ИИ» используют для описания ИИ, нацеленного на специфические, узкие задачи, такие как распознавание речи или создание рекомендательных систем. (Также известен как «инструментальный ИИ».) Конечно, ни у кого нет авторского права на эти термины, однако использование существующих технических терминов для обозначения чего-то совсем другого легко приводит к путанице.

Что такое УИИ, ИСИ и сверхразум?

УИИ означает “универсальный ИИ”. Этот термин использутеся для отсылки к амбициозной задаче по созданию универсальных разумных систем, диапазон задач которых как минимум сопоставим с диапазоном задач, за которые могут браться люди.
ИСИ означает “искусственный сверхразум”, это ИИ, существенно превосходящий человеческий интеллект. Точнее говоря, сверхразумная система - такая, которая превосходит людей по способности выдавать высококачественные решения, которые учитывают больше факторов и дальше заглядывают в будущее.

Распространенные заблуждения

    Ведущих исследователей ИИ не заботит УИИ. Конечно, в таких областях, как распознавание речи, есть исследователи, которые работают большей частью над специфическими задачами в своей области. Также некоторые исследователи преимущественно занимаются поисками коммерческих применений для существующих технологий. Тем не менее, у меня сложилось впечатление, что большинство исследователей ИИ в таких областях, как машинное обучение, аргументация и планирование, вносят свой вклад в решение задачи получения УИИ.

    Люди обладают “универсальным” интеллектом. Данное утверждение обычно считают настолько очевидным, что не указывают его явно, но оно подразумевается практически во всех дискуссиях об УИИ. Его обычно обосновывают тем, что люди способны выполнять широкий спектр задач и работ. Но, разумеется, нет такой человеческой профессии, которую человек не мог бы выполнять, поэтому нет ничего удивительного в том, что люди могут быть заняты в широком диапазоне существующих человеческих профессий. Трудно придумать такое определение широты разума, которое бы не зависело от людских когнитивных искажений и ошибок, например, антропоцентризма. Так что мы остаёмся с утверждением, что люди разумны “универсально” в том смысле, что могут делать все вещи, которые люди могут делать. Когда-нибудь удастся приемлемым образом сформулировать, что люди могут многое, а до тех пор вопрос остается открытым.

Что такое закон Мура?

Термин «закон Мура» основывется на фактах и на предсказаниях экспоненциального роста плотности и/или производительности электронных схем. В современной трактовке, отходящей от оригинального заявления Мура, этот закон можно сформулировать так: скорость вычислений, которую можно получить за определённую сумму, удваивается каждые N месяцев, где N примерно равно 18.

Распространенные заблуждения

    Закон Мура - это физический закон. На самом деле, этот закон представляет собой сумму эмпирических наблюдений за технологическим прогрессом; нет ничего, что делало бы его выполнение обязательным, и, конечно, он не будет оставаться справедливым бесконечно долго. Тактовая частота процессоров уже сейчас вышла на плато, и соотношение цена/производительность в последнее время улучшается за счет увеличения числа ядер (процессоров) на одном чипе.

    Быстродействие машин возрастает с такой скоростью, что создание более эффективных алгоритмов - пустая трата времени. На деле же несложные улучшения в алгоритмах часто оказываются намного более значимыми, чем усовершенствования аппаратной части.

Позволяет ли закон Мура предсказать появление сверхразума?

Нет. Есть много вещей, которые системы ИИ не могут делать, например, понимать сложные тексты на естественных языках. Прибавка скорости в подобных случаях означает просто более быстрое получение неправильного ответа. Для создания сверхразума нужны крупные концептуальные прорывы, которые трудно предсказать. Появление более быстрых машин мало чем может помочь.

Распространенные заблуждения

  • Наращивание мощи машин означает увеличение их интеллекта. Эта тема очень часто поднимается в дискуссиях о будущем ИИ, однако она берет свое происхождение из путаницы между понятием «мощный» применительно к человеческому интеллекту и намного более простым понятием «мощный» при описании компьютеров, т. е. числа операций в секунду.

Что такое машинный IQ?

Не существует такой вещи, как машинный IQ. До той степени, до которой интеллектуальные возможности личности сильно зависят друг от друга при выполнении множества задач, можно говорить о том, что люди имеют IQ, хотя многие исследователи оспаривают полезность любой одномерной шкалы. С другой стороны, возможности машины могут никак не соотноситься между собой: машина может победить чемпиона мира по шахматам и при этом совершенно не уметь играть в шашки или любую другую настольную игру. Машина, лучше всех справившаяся с контрольной работой, может оказаться неспособной ответить на простой вопрос о том, как ее зовут.

Распространенные заблуждения

  • Машинный IQ возрастает согласно закону Мура. Поскольку такой вещи, как машинный IQ, не существует, он не может возрастать. Закон Мура относится к только к «сырой» производительности компьютера и никак не связан с существованием алгоритмов, способных решить ту или иную конкретную задачу.

Что такое взрывное развитие ИИ?

Термин «взрывное развитие интеллекта» был введен И.Д. Гудом в 1965 г. в эссе «Размышления о первой ультраинтеллектуальной машине». В эссе описывалась возможность того, что достаточно интеллектуальная машина окажется способной реконструировать свою аппаратную и программную часть с тем, чтобы создать еще более интеллектуальную машину. Процесс будет повторяться, пока «интеллект человека не останется далеко позади».

Распространенные заблуждения

  • Как только машины достигнут интеллекта человеческого уровня, взрывное развитие ИИ станет неизбежным. С другой стороны, логически возможно, что проблема проектирования поколения N + 1 слишком сложна для любой машины поколения N. Также вероятно, что построенные нами машины будут превосходить людей в одних важных аспектах, но отставать от них в других. Они могут превзойти людей в решении важных проблем, таких как проблема нищеты, лечение рака и т.п., оставаясь при этом неспособными предложить что-то новаторское в области исследований ИИ.

Когда системы ИИ станут более разумными, чем люди?

На этот вопрос ответить трудно и тому есть несколько причин. Во-первых, слово «станут» подразумевает, что это вопрос прогнозирования, подобно предсказанию погоды, в то время как на самом деле он содержит элемент выбора: названное событие вряд ли когда-нибудь случится, если человечество решит не преследовать данную цель. Во-вторых, фраза «более разумные» подразумевает простую линейную шкалу интеллекта, которой в реальности не существует. Машины уже намного лучше людей выполняют некоторые задачи, и намного хуже - другие. В-третьих, если допустить существование какого-нибудь приемлемого понятия универсального интеллекта, который можно создать у машин, тогда вопрос приобретает смысл, но на него все равно очень сложно ответить. Получение интеллекта такого уровня потребовало бы значительных прорывов в исследовании ИИ, а их чрезвычайно трудно предсказать. Тем не менее, большинство исследователей ИИ полагают, что системы ИИ превзойдут по разумности людей уже в этом столетии.

Распространенные заблуждения

  • Этого никогда не случится. Делать прогнозы о научных прорывах - на редкость неблагодарное занятие. Так, 11 сентября 1933 г. лорд Резерфорд, пожалуй, самый известный ядерный физик своего времени, сказал большой аудитории на ежегодном съезде Британской ассоциации содействия развития науки, что «Каждый, кто надеется, что преобразования атомных ядер станут источником энергии, исповедует вздор». (Он говорил аналогичные вещи во многих других случаях, используя множество формулировок, все из которых по существу означали, что высвобождение ядерной энергии невозможно.) На следующее утро Лео Силард открыл индуцированную нейтронами цепную ядерную реакцию, и вскоре после этого запатентовал ядерный реактор.

Что могут системы ИИ сейчас?

Диапазон задач, которых машины делают заметные успехи, намного шире, чем несколько лет назад. Он включает игру в настольные игры, включая карты, ответы на простые вопросы, извлечение фактов из газетных статей, сборку сложных объектов, перевод текста с одного языка на другой, распознавание речи, распознавание разнообразных видов объектов на изображения, а также управление автомобилем в большинстве обычных ситуаций дорожного движения. Существует также множество менее очевидных задач, выполняемых системами ИИ, в том числе выявление мошеннических транзакций по кредитным картам, оценка заявок на кредит и торги на сложных электронных аукционах. Многие функции поисковой системы на деле выполняются простыми формами ИИ.

Распространенные заблуждения

    Такая задача, как, например, игра в шахматы, одинакова что для человека, что для машины. Это неверно; машину приходится «вести за ручку» в гораздо большей степени. Люди учатся шахматам, слушая или читая правила, наблюдая и играя. Типичная шахматная программа лишена такой возможности. Правила непосредственно закладываются в машину в форме алгоритма, который генерирует все разрешенные ходы для заданной позиции. Машина не «знает» правила в том смысле, в каком их знает человек. Однако некоторые недавние работы по обучению с подкреплением представляют собой исключение: так, система DeepMind для игры в видеоигры обучается каждой игре с нуля. В действительности неизвестно, в чем состоит ее обучение, но представляется маловероятным, что она учит правила каждой игры.

    Машины выполняют задачи так же, как и человек. Часто мы не знаем, как люди делают те или иные вещи, однако крайне маловероятно, чтобы их действия совпадали с операциями типичной программы ИИ. Например, программы для игры в шахматы учитывают возможные будущие последовательности ходов, начиная с текущего позиции на доске, и сравнивают их последствия, в то время как люди часто опознают возможное преимущество, которое можно получить, а потом ищут ходы, позволяющие его достичь.
    Если машина может выполнить задачу Х, то она сможет выполнить все задачи, доступные человеку, который способен решить задачу Х. См. вопрос о машинном IQ. В настоящее время машины не имеют универсального интеллекта в том смысле, что и человек, поэтому их способности часто очень узки.

Как ИИ повлияет на человечество в ближайшем будущем?

Очень вероятно, что в обозримом будущем появятся некоторые крупные новшества. Так, уже активно разрабатывается и тестируется автомобиль с системой автоматического управления. По меньшей мере одна компания обещала первые доставки грузов с их помощью в 2016 г. (Другие компании более осторожны, осознавая выпавшие им трудности.) Благодаря совершенствованию компьютерного зрения и передвижения с помощью ног стало практичным использовать роботов в неструктурированном окружении. К подобным задачам относятся сельское хозяйство, сервисное обслуживание техники, а также помощь людям (особенно престарелым и немощным) в домашних делах. Наконец, машины улучшили свое понимание речи, поэтому поисковые системы и «персональные помощники» на мобильных телефонах перешли от индексации веб-страниц к их пониманию, что привело к качественному улучшению способности таких систем отвечать на вопросы, синтезировать новую информацию, давать советы и сопоставлять факты. Кроме того, ИИ может сильно повлиять на такие области науки, как системная биология, в которых сложность и большой объем информации бросают вызов способностям человека.

Распространенные заблуждения

  • Роботы готовы захватить власть. См. раздел «Когда системы ИИ станут более разумными, чем люди?» В подавляющем большинстве случаев прогресс в области ИИ происходит пошагово и относится к тому, как сделать компьютеры и роботов более полезными. Тем не менее, в долгосрочной перспективе проблема сохранения людского контроля остается важной.

Приведет ли прогресс ИИ и робототехники к тому, что большинство профессий, в настоящее время выполняемых людьми, перейдет к машинам?

Некоторые исследования, например, выполненное Frey and Osborne (2013), говорят о том, что из-за автоматизации в ближайшем будущем могут пострадать до половины профессий в США; другие авторы, например, Brynjolfsson and McAfee (2011), указывают, что процесс уже начался: медленный возврат к полной занятости после рецессии 2008 г., а также расхождение между повышением продуктивностью и стагнацией заработной платы являются последствиями повышенной автоматизации в профессиях, которые предусматривают рутинные операции. Принимая во внимание, что прогресс ИИ и робототехники продолжается, представляется неизбежным, что большинство профессий будет затронуто. Это не обязательно означает массовую безработицу, но может привести к большому сдвигу в структуре экономики и потребовать новых идей по организации работы и оплате.

Распространенные заблуждения

  • Любая работа, которую выполняет робот, означает меньше работы для людей. Работа - не игра с нулевой суммой: человек, которому помогает команда роботов, может быть намного более продуктивным и, следовательно, гораздо более востребованным; без помощи роботов работа человека, сделанная с тем же самым старанием, может оказаться экономически неоправданной, и ни человек, ни роботы не делали бы ничего. Из тех же соображений доступность малярных кистей и валиков означает работу для маляров: если краску было бы необходимо наносить по капельке кончиком иглы, не было бы возможности нанимать маляров для покраски зданий.

Что такое дроны, автономное оружие и роботы-убийцы?

Дроны представляют собой летательные аппараты, которыми удаленно управляют люди; некоторые дроны несут оружие (обычно реактивные ракеты), запускаемые оператором. Автономное оружие - это любое устройство, которое автоматические выбирает и поражает (т. е. пытается разрушить) цель. Современные системы включают стационарные самонаводящиеся пулеметы (используются в корейской демилитаризованной зоне) и различные виды корабельных противоракетных комплексов. Быстро повышающаяся техническая возможность заменить человека-оператора дрона на полностью автоматическую систему привела к появлению летальных автономных комплексов вооружения (LAWS), которые стали субъектом дискуссии на Женевской конференции по разоружению. Термин «робот-убийца» описывает класс вооружений, который может включать средства передвижения на колесах или ногах, а также корабли, летательные аппараты и даже искусственных летающих «насекомых».

Распространенные заблуждения

  • До полностью автономных систем вооружения осталось 20–30 лет. Данное утверждение повторяется во многих статьях о дискуссиях в Женеве по поводу LAWS. Источник этого заблуждения неясен, однако, по-видимому, оно проистекает из переоценки. Технологии развертывания автономных вооружений по большей части готовы к использованию; Министерство обороны Великобритании заявило без лишних деталей, таких как применение в морском бою, что создание полностью автономных вооружений «может быть осуществимым теперь».

Надо ли бояться роботов-убийц, кидающихся на всех или захватывающих власть во всем мире?

Если автономные вооружения будут развернуты, они столкнутся с теми же трудностями, что и обычные солдаты, которым приходится отличать друга от врага, мирных жителей от боевиков. Возможно, что произойдет тактический несчастный случай с гибелью гражданского населения, либо функционирование робота пострадает из-за радиотехнических помех либо кибератак. В свете последней проблемы некоторые военные эксперты предсказывают, что автономные вооружения будут закрытыми системами без электронной связи; с другой стороны, из-за этого будет труднее перехватить управление у автономного оператора, если система станет вести себя некорректно. В обозримом будущем автономные вооружения, вероятно, будут тактическими и станут выполнять задания ограниченного масштаба. Крайне маловероятно, чтобы их программировали для самостоятельной разработки планов глобального масштаба.

Распространенные заблуждения

  • Мы можем просто нажать на выключатель. Выключатель сделает любую автономную систему вооружения уязвимой для кибератак, следовательно, такие каналы связи лучше отключать. Кроме того, если обладающей универсальным интеллектом системе дать задание для выполнения, у нее появится мотивация сопротивляться выключению.

Что такое экзистенциальный риск, связанный с ИИ? Он реален?

Ранние предостережения о риске, исходящем от ИИ, были довольно неопределенными. И.Д. Гуд добавил к своему предсказанию пользы от взрывного развития ИИ оговорку «при условии, что машина достаточно покорна, чтобы рассказать нам, как удержать контроль над собой». Есть общее ощущение, что наличие сверхразумных сущностей на нашей планете может быть причиной для тревоги; с другой стороны, более умные машины, как правило, более полезны, поэтому неочевидно, почему создание гораздо более умных машин обязательно принесет зло.

Тем не менее, доказательство очень простое.

  1. Представьте сверхразумную систему, предназначенную для достижения определенной цели, точно указанной человеком-проектировщиком. Теперь представим, что эта цель не совсем согласуется с ценностями рода людского, определиться с которыми очень трудно (и это в лучшем случае).
  2. Любая достаточно способная разумная система будет стремиться обеспечить непрерывность своего существования, а также захватить физические и компьютерные ресурсы - не ради себя, а для достижения успеха в выполнении задания.

И теперь у нас проблема. По сути это все та же старая история о джинне и лампе, об ученике чародея или царе Мидасе: вы получаете в точности то, что просите, а не то, что подразумеваете. В 1960 г. Норберт Винер, пионер теории автоматического управления, писал: «Если мы используем для достижения своих целей механическое средство, в работу которого не можем эффективно вмешаться, лучше быть совершенно уверенным в том, что цель, заложенная в машину, - эта именно та цель, которую мы действительно желаем». Марвин Минский придумал пример, в котором машину просят вычислить столько знаков числа пи, сколько возможно. Ник Бостром дал пример запроса на массу канцелярских скрепок . Человек интерпретирует эти цели, исходя из общечеловеческих целей, которые в частности подразумевают, что покрытие всей Земли компьютерными серверами или канцелярскими скрепками - это плохое решение. Высокоодаренная сущность, принимающая решения, особенно если благодаря Интернету она имеет доступ ко всей мировой информации, миллиардам экранов и большей части нашей инфраструктуры, может бесповоротно изменить человечество. К счастью, сейчас природа проблемы несколько прояснилась, поэтому можно начать работу над ее решениями.

Распространенные заблуждения

    Сверхразумные машины спонтанно обретают сознание, или же они по природе своей злы и ненавидят людей. Писатели-фантасты склонны делать одно или оба из этих допущений, чтобы создать антагонизм между машинами и людьми. Такие допущения не нужны и не мотивированы.

    Системы ИИ разрабатываем мы, люди, так зачем нам разрушать самих себя? Некоторые защитники ИИ возражают, что поскольку системы ИИ строятся людьми, нет причин предполагать, что когда-нибудь мы построим нечто такое, чьей целью станет уничтожение человечества. Они не ухватывают самой сути, а именно того, что преднамеренный злой замысел со стороны разработчика или агента не является необходимой предпосылкой для существования экзистенциальной угрозы; проблема проистекает из неверного определения целей.

    Этого никогда не случится. См. «Когда системы ИИ станут более разумными, чем люди?»

Почему люди ни с того ни с сего стали беспокоиться об ИИ?

Начиная с 2014 г. СМИ регулярно сообщают об опасениях, высказанных такими хорошо известными фигурами, как Стивен Хокинг, Элон Маск, Стив Возняк и Билл Гейтс. В репортажах обычно цитируются наиболее мрачные и эффектные реплики и опускаются стоящие за ними основания, а также суть опасений, которые близки к описанным в разделе «Что такое экзистенциальный риск, связанный с ИИ?» Во многих случаях опасения основываются на чтении книги Ника Бострома «Искусственный интеллект». Другая причина, породившая теперешнюю волну интереса к данной теме, - это тот факт, что прогресс в разработке ИИ ускоряется. Это ускорение, вероятно, обусловлено комбинацией факторов, в том числе постепенно упрочняющимся теоретическим фундаментом, который связывает различные области разработки ИИ в единое целое, и быстрым ростом коммерческих вложений в исследования ИИ, поскольку продукция академических лабораторий достигла того уровня качества, при котором ее можно применять для разрешения проблем в реальном мире.

Распространенные заблуждения

  • Если люди волнуются, значит, до сверхразумного ИИ рукой подать. Вряд ли найдется исследователь ИИ, который думает, что до сверхразумных машин рукой подать. (См. раздел «Когда системы ИИ станут более разумными, чем люди?») Это не значит, что мы должны ждать до того момента, чтобы воспринимать проблему серьезно! Если мы обнаружим астероид диаметром 10 миль, траектория движения которого пересечется с Землей через 50 лет, разве мы отмахнемся от этой новости со словами: «Я уделю ей внимание, когда до столкновения будет 5 лет?».

Каким будет прогресс ИИ в ближайшие десятилетия?

Весьма вероятно, что области, в которых не нужен универсальный интеллект человеческого уровня, достигнут зрелости и породят надежные высококачественные продукты уже в следующее десятилетие. В эти области входят распознавание речи, извлечение информации для создания простого фактического материала, визуальное распознавание объектов и поведения, роботизированное обращение с повседневными вещами и автономное вождение. Усилия по улучшению качества и расширению границ для систем понимания текста и видео, а также придание домашним роботам большей надежности и общей полезности приведут к системам, проявляющим здравый смысл, связывающим вместе обучение и действие во всех этих модальностях. Специальные системы для приобретения и организации научных знаний, а также для работы со сложными гипотезами, вероятно, сильно повлияют на молекулярную биологию, системную биологию и медицину. Нам следует начать поиски похожих влияний в социальных науках и формировании политики, особенно учитывая массивный рост машиночитаемых данных о человеческой деятельности и потребность в машинах, которые понимали бы человеческие ценности, если такие машины будут надежными и полезными. Публичные и частные источники знаний (системы, которые знают и делают выводы о реальном мире, а не только хранят данных) станут частью общества.

Что такое «сопоставление ценностей»? Какое оно имеет значение?

Сопоставление ценностей - это задача сопоставления ценностей (целей) машин и людей с тем, чтобы оптимальным выбором машины было, грубо говоря, всё, что делает людей наиболее счастливыми. Без такого сопоставления есть немалый риск, что сверхразумные машины выйдут из-под нашего контроля.

Распространенные заблуждения

  • Все, что нам нужно, - это законы робототехники Азимова . Законы Азимова имеют достаточно смысла для человека, чтобы сформировать основу различных сюжетов рассказов, однако без значительного дальнейшего уточнения для робота они практически не несут полезной информации. Основа законов в виде набора правил, а не функции полезности, создает проблемы: их лексикографическая структура (т. е. тот, факт, что любой вред людям всегда более важен, чем весь вред роботам) означает, что нет никакой неопределенности и невозможно компромиссное решение. Так, роботу придется спрыгнуть с обрыва (и разрушить себя), чтобы поймать комара, который мог бы когда-нибудь в будущем укусить человека. Робот должен запереть дверь в автомобиль, потому что когда человек садится в машину, риск вреда для него повышается. Наконец, при подходе, направленном на максимизацию полезности для человека, нет необходимости в третьем законе (самосохранение робота), поскольку робот, который не поддерживает собственное существование, не может внести вклад в полезность для человека и, конечно, разочарует своего хозяина.

Что сообщество, занимающееся ИИ, предпринимает в связи с экзистенциальным риском?

Большинство дискуссий об экзистенциальном риске, исходящем от ИИ, проходило без основной части сообщества, занимающегося ИИ; поначалу это привело к преимущественно негативным реакциям со стороны исследователей в области ИИ. В 2008 г. Американская ассоциация искусственного интеллекта (AAAI) сформировала группу для изучения данной проблемы. В промежуточном отчете группы было отмечено существование некоторых долговременных вопросов, однако приуменьшено значение мнения о том, что ИИ представляет собой риск для человечества. Позднее, в январе 2015 г. в Пуэрто-Рико была проведена конференция , спонсированная Институтом будущего жизни, которая привела к публикации открытого письма , которое подписали присутствовавшие, а затем еще 6000 человек. В письме призывалось сосредоточить особое внимание исследований на данной проблеме, а также предлагался более подробный план исследований . Вскоре Элон Маск основал грант в размере 10 млн долларов на исследования в данной области. Кроме того, Эрик Хорвиц спонсировал долгосрочное исследование , которое, как ожидается, будет отслеживать этот вопрос и, если потребуется, давать рекомендации. пять крупнейших технологических компаний сформировали Партнерство по вопросам ИИ , чтобы решать вопросы как краткосрочной, так и долгосрочной перспективы, касающиеся этики и безопасности ИИ. Наконец, AAAI сформировала постоянный комитет по этическим проблемам ИИ.

Распространенные заблуждения

  • Регулировать или контролировать исследования невозможно. Некоторые утверждают, что невозможно избежать отрицательных последствий, поскольку прогресс исследований не остановить и невозможно регулировать. На самом деле, это заявление - ложь: Асиломарская конференция 1975 г. по рекомбинантной ДНК успешно наложила добровольный мораторий на эксперименты, цель которых заключалась в создании наследуемых генетических модификаций у людей; в наши дни этот мораторий не только действует, но и стал международной нормой. Кроме того, если исследования по созданию ИИ человеческого уровня будут протекать бесконтрольно, что вполне может случиться, еще важнее начать серьезное изучение методов, гарантирующих, что системы ИИ останутся под нашим контролем.

Чем я могу помочь?

Если вы исследователь, занимающийся ИИ (или экономист, специалист по этике, политолог, футурист или юрист, интересующийся этими вопросами), то для вас есть идеи и темы в программе исследований, берущей начало на конференции 2015 в Пуэрто-Рико. Вероятно, будут проводиться воркшопы, связанные с крупными конференциями по ИИ, осенним и весенним симпозиумами AAAI и т. п. Больше информации можно найти на веб-сайтах FHI, CSER, FLI MIRI и Center for Human-Compatible AI .

Распространенные заблуждения

  • Сделать ничего нельзя: эти вещи случатся, и никакие действия с нашей стороны не изменят будущее. Ничто не может быть дальше от истины. Мы не можем предвидеть будущее, потому что мы его создаем. Это коллективный выбор.

Сергей Скептик, Pion

Одна из наших ключевых экспертиз – машинное обучение, и мы стараемся отправлять сотрудников на профильные конференции для получения новых знаний (о копенгагенской конференции Scala Days мы уже в блоге), да и просто, чтобы быть в курсе основных трендов.

Для отрасли искусственного интеллекта это особенно важно, так как здесь ландшафт меняется как нигде быстро, а количество источников информации огромно. Целью моей поездки было как раз понять, что из «горячих» тем мы сможем использовать на практике в наших проектах.

Приехал я в Нью-Йорк за день до начала мероприятия и, как оказалось, в самый разгар очередного гей-парада, поэтому все витрины магазинов, фасады зданий и символ города Empire State Building были раскрашены в цвета радужного флага. Отчасти это задало тон поездке. На следующий день, погуляв и проникнувшись духом города, я поехал регистрироваться на конференцию.

О конференции

Конференция оказалась довольно масштабной и включала около 80 выступлений, проходивших параллельно в семь потоков, поэтому очно мне удалось посетить лишь небольшую часть. Для остального пришлось ждать видеоматериалов - O’Reilly всегда их публикует на safarionlinebooks , и там же можно посмотреть видео с предыдущих конференций (правда нужна подписка).

С одной стороны, тематика конференции довольно узка: когда мы говорим «искусственный интеллект», то в 90% случаев подразумеваем глубокие нейронные сети. С другой стороны, докладчики приглашаются из совершенного разных областей, и ввиду разнообразия решаемых ими задач компания спикеров получается довольно разношерстной. На сайте конференции можно ознакомиться с ее агендой .

Говоря о представленных на конференции компаниях, можно выделить три большие группы. Первая – это вездесущие технологические гиганты вроде Google, IBM, Microsoft, Amazon и др. Вторая – молодые компании и смузи-ориентированые AI-ориентированные стартапы, в коих сейчас недостатка нет. И третья – это представители академической среды – основной поставщик новых теорий, подходов и алгоритмов. Лично на меня выступления последних, как правило, производят наибольшее впечатление.

Ввиду короткого формата выступлений (на каждую лекцию вместе с вопросами отводилось всего 45 минут) в них было очень мало математики или алгоритмов, в основном описывались общие идеи и демонстрировались примеры их применения. В целом это понятный подход, если что-то тебя заинтересовало - welcome, гугли эту тему в интернете и изучай её более подробно. Поэтому для себя я сформулировал цель посещения подобных мероприятий так – понять, какие темы на слуху и в каком направлении развивается индустрия.

К слову, за все время конференции ни в одном из выступлений я не услышал так любимый многими термин «Big Data», что, на мой взгляд, говорит о достаточно профессиональном уровне аудитории – терминология должна использоваться корректно.

Вообще, когда мы говорим «искусственный интеллект», воображение чаще всего рисует нечто подобное.

Но на самом деле ИИ - не только и столько про роботов, это гораздо шире. По сути речь идет о любой интеллектуальной системе или программе, способной в условиях большой неопределенности решать задачи, традиционно считавшиеся прерогативой человеческого интеллекта.

О глубоком обучении

Первый день организаторы отвели под мастер-классы. В основном это были туториалы по всевозможным фреймворкам глубокого обучения (deep learning), которых сегодня «на слуху» около 10 штук и которые, на мой личный взгляд, как две капли воды похожи другу на друга.

Глубокое обучение - это процесс обучения многослойных нейронных сетей, оптимизированных для работы с данными сложных иерархических форматов, и в последнее время ставший стандартным подходом для анализа текстов, изображений, аудио/видео данных и временных рядов.

Основное преимущество глубоких сетей перед другими методами машинного обучения и немногослойными сетями (shallow networks) – они избавляют от необходимости заниматься ручной генерацией фич (feature engineering), поскольку этот механизм заложен в архитектуру самой сети. Обратная сторона – такие сети требуют больше данных для обучения и для них сложнее подбирать параметры.

В глубоких сетях выделяют 2 базовых архитектуры: сверточные (CNN, Convolutional Neural Networks) и рекуррентные сети (RNN, Recurrent Neural Networks). Первые используются в основном для работы с изображениями, а вторые - для анализа текстов и любых последовательностей. Все остальные архитектуры - вариации на тему этих двух.

Чтобы аналитики не занимались реализацией низкоуровневой логики, за несколько лет появилось множество API, упрощающих разработку таких сетей и сводящих ее к конфигурации нужной архитектуры. Здесь перечислены почти все:


Я решил не мудрить и выбрал два наиболее популярных: TensorFlow и Keras.

Keras – один из наиболее высокоуровневых инструментов в этой серии, по сути являющийся Lego-конструктором. Разработка приложения сводится к выбору архитектуры сети, числа слоев, нейронов и активационных функций. Простейшие глубокие сети в Керасе собираются в 10 строк кода, что делает этот инструмент идеальным для быстрого старта или прототипирования.

TensorFlow, наоборот, один из наиболее низкоуровневых инструментов. Google его позиционирует как пакет для любых символьных вычислений, не только для глубоких сетей. На мой взгляд, одна из киллер-фич – это обалденная динамическая визуализация. Чтобы понять, о чем идет речь, можно посмотреть, например, .

TensorFlow является основной технологией для огромного числа AI-проектов и помимо Гугла используется в IBM, SAP, Intel и много где еще. Важный его плюс – большой репозиторий готовых к использованию моделей.

Второй и третий дни были отведены под лекции. После утренней обзорной сессии с короткими десятиминутными выступлениями о достижениях индустрии, шел блок из 6 лекций.

Deep Learning в банках

Мне всегда была интересна тематика применения глубоких сетей не для очевидных картинок и текста, а для более «традиционных» структурированных данных, поэтому первой лекцией я выбрал рассказ Эрика Грина из Wells Fargo AI Labs об анализе транзакционных данных в банках.

«Продвинутные» банки давно делают глубокую аналитику для прогнозирования будущих транзакций, сегментации, выявления мошенничества и т.д., но пока мало кто может похвастаться работающим решением на базе глубоких сетей.

Идея предложенного подхода очень простая – сначала история транзакций записывается в неком структурированном формате, после этого каждый атрибут транзакции кодируется определенным числом (word embedding), а затем к получившимся векторам применяются глубокие сети (CNN или RNN). Такой механизм универсален и позволяет решать как задачу классификации, так и задачи прогнозирования и кластеризации транзакций. К сожалению, с точки зрения подачи материала лекция оказалась довольно слабой, и у автора выудить детали по качеству данного решения не удалось.

Зато следующий рассказ о совместном проекте Teradata и датского Danske Bank по внедрению антифрод-решения на базе глубокого обучения получился куда лучше. Задача была повысить качество обнаружения мошеннических транзакций. Ребята описывали довольно интересное решение, связанное с представлением транзакций в виде «псевдокартинки» и последующим применением сверточной нейронной сети.

Ниже приведен пример такой псевдокартинки, где по горизонтали отложены атрибуты транзакции, а по вертикали моменты времени. Кроме того, вокруг каждого атрибута (выделены светло-синим) по часовой стрелке отложены наиболее коррелированные с ним атрибуты. Такое представление позволяет легко находить аномальные паттерны в поведении клиентов.


Если верить их цифрам, по качеству это решение оставило далеко позади даже всеми любимый градиентный бустинг. Я не всегда доверяю цифрам в презентациях, но даже если качество сопоставимо, это очень интересный результат. Я планирую обязательно попробовать данный подход где-нибудь в наших задачах.

Правда на вопрос «Как такое решение будет проходить европейские требования GDPR по интерпретируемости модели» ребята так и не ответили. Будь он задан мне, я бы отослал к такой замечатльной штуке как LIME - интерпретатору сложных нелинейных моделей.

Дальше я пошел на панельную дискуссию с тремя девушками, владельцами AI-ориентированных стартапов. Дискуссия была о том, как выстроить эффективный бизнес в сфере AI. По факту сессия оказалась самой бесполезной: несмотря на обещанный «no fluff» в названии, никаких секретов раскрыто не было, а «общие» вопросы чередовались «общими» ответами. Единственное, что запомнилось из лекции, это выступавшая там девушка с необычным именем Коко (по совместительству профессор MIT).

Что там в Amazon

Далее меня заинтересовала лекция от Amazon про фреймворк распределенного глубокого обучения Apache MXNet . Я рассчитывал на мини-туториал по данному фреймворку, но по факту 90% рассказа были посвящены рекламе сервисов Amazon, а в оставшиеся 10% MxNet была упомянута просто как основная платформа для глубокого обучения, использующаяся во всех сервисах Амазона.

Среди достижений народного хозяйства компании были представлены:

  • голосовой помощник Alexa ,
  • телепомощник Amazon Show - вариант Alexa с камерой и дисплеем,
  • Amazon X-Ray – встроенный в видеоплеер помощник, который по стопкадру может показать биографию актера, а также вывести информацию о сюжете и персонаже,
  • а также Amazon - магазин без кассовых аппаратов (мечта гопника) – просто набираешь продукты в корзину и идешь на выход, магазин сам определяет состав продуктов в корзине и списывает деньги со счета. Магазин сейчас работает в beta-режиме (только для сотрудников).


Во всех перечисленных выше проектах в том или ином виде используется глубокое обучение и, в частности, фреймворк Apache MxNet.

«Железная» логика

Далее выступал представитель Numenta – компании, которая занимается разработкой систем, моделирующих работу Неокортекса (части мозга человека, отвечающей за высокоуровневую интеллектуальную деятельность и обучение). Идея – построить обучающиеся структуры, более близкие по своей архитектуре мозгу человека, чем сегодняшние нейронные сети. В основе лежит теория иерерархической темпоральной памяти (Hierarchical Temporal Memory), которая описывается в книге Джефа Хокинса 2004 года «Об интеллекте». Собственно, он же и основал компанию Numenta.

Сами авторы позиционируют свой проект как исследовательский и, несмотря на то, что алгоритм может решать разные задачи, пока нет результатов, подтверждающих, что подход работает лучше традиционных глубоких нейронных сетей. У выступавшего Мэта Тейлора есть канал на YouTube (HTMSchool), но он мне, честно говоря, не понравился и для ознакомления я бы рекомендовал все-таки печатные материалы.

Тема «железа» (AI acceleration) на конференции поднималась достаточно часто. Многие компании занимаются разработкой высокопроизводительных вычислительных комплексов, оптимизированных специально под обучение нейронных сетей. Известные примеры это процессоры Google TPU (tensor processing units), GPU дата-центры от Nvidia, или созданный в 2014 году компьютер TrueNorth от IBM, своей архитектурой повторяющий модель неокортекса. С ростом объемов данных скорость обучения становится важным конкурентным преимуществом.

Когда роботы захватят людей

Далее был интересный доклад Кэти Джордж из McKinsey о потенциале автоматизируемости профессий. Частично о результатах можно почитать на McKinsey (к сожалению, в виде единой pdf у них не нашел).

Каждую профессию они рассматривали как комбинацию определенных действий и смотрели, какой процент этих действий может быть автоматизирован с учетом текущих технологий. Результаты меня удивили! Несмотря на то, что потенциал для автоматизации есть почти во всех профессиях, полностью автоматизированы могут быть всего 5% позиций. Что немножко расходится с популярной риторикой о том, что через год роботы поработят всех юристов (или как там было...).

Наибольшим потенциалом обладает предсказываемая физическая деятельность – это те же конвейеры на производстве, а также сбор и хранение данных, наименьшим – непредсказуемая физическая активность – например, игра в футбол (впрочем, насчет непредсказуемости болельщики сборной России могут поспорить).

Любопытно, что зависимость автоматизируемости от оплаты труда имеет форму треугольника – высокооплачиваемые профессии мало автоматизируются, а вот среди низкооплачиваемых разброс намного больше.

Интересно, что если смотреть потенциал по разным индустриям, то на первое место авторы поставили горячо любимую в нашей компании задачу персонализированного маркетинга (personalized advertizing).

День второй

Если глубокая аналитика давно перестала быть чисто академической дисциплиной и стала вполне себе прикладной (любой ларек с шаурмой умеет строить модели), то в области искусственного интеллекта дела обстоят чуть по-другому. Область активно развивается, и люди пытаются находить все новые точки применения, среди которых есть и абсолютно бесполезные с практической точки зрения.

Генерация искусства

Даг Эк из Google рассказывал о проекте Google Magenta – открытом репозитории моделей для создания музыки и рисунков.

Затем был рассказ про сеть sketch-RNN, электронного художника, работающего на базе автоэнкодера и умеющего перерисовывать нарисованные от руки картинки и символы.

Автоэнкодер – сеть, сначала переводящая картинку в некое сжатое представление, а затем восстанавливающая его изначальную размерность. Таким образом, сеть работает как высокочастотный фильтр и способна убирать шум с картинки (шум в широком смысле, например, недорисованный ус).


Слева – котэ, нарисованный человеком, а справа - сгенерированный машиной образ.

Понять, где рисует машина, где человек – невозможно. В целом, становится все больше областей, где машины проходят тест Тьюринга (тест Тьюринга не обязательно формулируется для диалоговых систем, это может быть, например, распознавание или генерация картинок).

Авторы сами признаются, что конкретной цели у проекта нет, но это нормально, если вспомнить, что многие выдающиеся изобретения были разработаны безо всякой цели. По крайней мере, для рынка поп-музыки потенциал, мне кажется, очевиден.

Покер и теория игр

Другое известное применение искусственного интеллекта – это соревнование с человеком в азартных (и не очень) играх. Томас Сендхолм из Carnegie-Melon University рассказывал об игре в покер. Все знают, что машина давно обыгрывает человека в шахматы, слышали про недавнюю победу в Go, но выигрыш искусственного интеллекта в покерном турнире в этом году не получил большой огласки.

В теории игр игра с неполной информацией – та, в которой игрок не видит карт соперника. Из-за этого на каждом шаге ему приходится иметь дело не с детерминированным деревом игры, а с вероятностями и их матожиданием. Такие игры сложнее, так как необходимо просчитывать большее количество комбинаций. Решить игру означает найти оптимальную стратегию. Если упрощенные версии покера с помощью брут-форса были решены относительно давно, то более сложный вариант noLimit texas Holdem содержит 10^161 (больше числа атомов во Вселенной) вариантов игры, и прямое решение здесь невозможно.

Для решения использовался мощный суперкомпьютер, в реальном времени обрабатывающий поступающую информацию от игрового стола (Libratus), а в качестве математического алгоритма метод Monte-Carlo Counterfactual Regret Minimization.

Турнир я не видел, но говорят, вопреки ожиданиям AI играл довольно «тайтово», делал большие ставки, «давил банком» и брал «на понт».


Для индустрии азартных игр это означает перспективу роботизации, сравнимую с роботизацией рынка ценных бумаг.

Беспилотные авто

Одна из топовых тем, имеющих отношение к искусственному интеллекту, – это, конечно, беспилотные авто. Она не только популярна, но еще и весьма «широка». Разработчики таких машин вынуждены иметь дело не только с технологиями компьютерного зрения, но еще и с теорией оптимального управления, многочисленными системами позиционирования и решать множество прогностических задач. Не так сложно научить машину распознавать сцену и поворачивать руль в нужном направлении. Гораздо сложнее создать полностью автономного агента, способного безопасно передвигаться в потоке вместе с обычными водителями и координировать с ними свои действия.

Анка Драган из Berkley рассказывала о проблемах поведения беспилотных авто на дорогах. Для «затравки» было приведено два примера.

Первый пример: в штатах тестируемая гугломашина простояла два часа на перекрестке, пропуская другие машины, поскольку не могла вклиниться в поток. Вторым примером было показано видео а-ля телепередача «Водить по-русски», в котором где-то на просторах Миннесоты грузовик не дает перестроиться машине в свой ряд и «отжимает» легковушку обратно.

Сейчас разрабатываемые беспилотники воспринимают другие машины как препятствия, от которых нужно держаться подальше: если робот видит, что машина не уступает дорогу, он не будет к ней соваться. Но такая модель поведения (defensive behavior) будет крайне неэффективной: на перекрестке такие беспилотники могут пропускать другие машины до бесконечности, а на дороге не смогут даже перестроиться на съезд.

С другой стороны, как показывает второй пример, рассчитывать на разумное поведение водителей тоже нельзя. Отсюда и одно из главных опасений – сумеет ли беспилотник правильно повести себя в нестандартных ситуациях. Поэтому авторы предлагают при разработке использовать некий сбалансированный подход – начинать маневр, исследовать реакцию водителя, и в зависимости от нее корректировать свои действия.

Про Doom, или что еще умеют глубокие сети

Далее была лекция Руслана Салахутдинова из Carnegie-Melon University и Apple с обзором возможностей глубокого обучения для решения различных задач. С точки зрения подачи материала, на мой взгляд, это была одна из лучших лекций. Вообще, интересующимся глубоким обучением рекомендую ознакомиться с лекциями данного товарища, коих в интернете достаточно (например, ). Приведу несколько примеров.

За последние несколько лет глубокие сети совершили прорыв, не только количественный, но и качественный – начали появляться новые задачи, комбинирующие визуальную и текстовую аналитику. Если 2-3 года назад сети умели только классифицировать тематику картинки, то теперь они легко могут дать словесное описание всей сцены на естественном языке (задача caption generation).

Кроме того, подобные системы умеют явно выделять на картинке объекты, соответствующие каждому отдельному слову из описания (так называемые Visual Attention Networks).

Основной вектор развития рекуррентных сетей связан с переходом к более совершенным механизмам запоминания контекста. В свое время в сфере рекуррентных сетей подобный прорыв совершили LSTM (long short-term memory) сети. Сейчас также разрабатываются сети с разными моделями памяти и один из таких вариантов - это сети MAGE, memory as acyclic graph enconding, способные моделировать долговременные ассоциации в тексте.

Или совсем поражающая воображение штука - сети с динамической памятью (Dynamic Memory Networks), которые не просто анализируют картинки или текст, но еще умеют отвечать на любой заданный вопрос касательно этой картинки или текста.

Далее был интересный блок про обучение с подкреплением (reinforcment learning). С появлением глубокого обучения данный подход получил всплекс интереса. Новые алгоритмы также пытаются задействовать механизм памяти.

В двух словах, Reinforcment Learning – это обучение оптимальному поведению. Какие-то действия системы поощряются, какие-то штрафуются, и задача системы научиться правильно действовать. Основное отличие от обучения с учителем в том, что система получает поощрение не при каждом действии, а довольно редко, поэтому она должна самостоятельно выстраивать весьма сложные стратегии поведения.

Для обучения с подкреплением идеально подходит виртуальная среда, в частности компьютерные игры. Она позволяет создавать бесконечное количество экспериментов, давая возможность без ограничений обучаться алгоритму, что невозможно сделать в реальности.

Результат работы традиционного RL (без памяти) был продемонстрирован на примере игры Doom. Для обучения использовались несколько классических карт. За найденный ключ или убитого врага следовало поощрение, а например, за падение в лаву – наказание. Если на первых итерациях обучения бот упирался лбом в стену, то спустя 8 часов обучения, он с полоборота сносил игроков так, что те не успевали ничего понять. Система отлично обобщала получаемые знания и одинаково хорошо играла как на старых, так и на новых картах.

Если для шутеров классический RL вполне подходит, то для более сложных игр с логическими заданиями уже требуется запоминание контекста, т.е. наличие памяти. Для этого был разработан класс алгоритмов Reinforcment Learning with Structured Memory.

Про компьютерное зрение

Исторически самое первое применение глубоких сетей – это анализ изображений. Лекция от Microsoft была посвящена технологиям компьютерного зрения. Тимоти Хейзен выделил четыре основные задачи:
  • классификацию изображений,
  • поиск объектов на картинке (object detection),
  • сегментацию - выделение связных областей,
  • определение схожести.

Если до 2012 года бал правили традиционные подходы, когда генерация фичей для обучения модели выполнялась вручную (HOG, SIFT и прочее), то в 2012 году прорыв в качестве распознавания совершила глубокая нейронная сеть AlexNet. В дальнейшем глубокие архитектуры стали стандартом.

В области компьютерного зрения бенчмарком является конкурс ImageNet , на котором тестируются все новые архитектуры. В 2016 году первое место заняла сеть от Microsoft ResNet, содержащая больше 150 слоев. На картинке ниже приведено сравнение точности известных сверточных сетей. Тенденнция к увеличению количества слоев на лицо, однако вместе с ней актуальной становится проблема «убывающего градиента» - обучать такие сети все сложнее. Можно предположить, что дальнейшие улучшения будут связаны с изменением архитектуры сетей, а не в увеличении числа слоев.

В качестве примера приводилось четыре любопытных проекта, которые Microsoft делал в качестве консультантов.

  • Трекинг передвижения снежных леопардов в условиях дикой природы (подробнее )
  • Умный холодильник – когда заканчивается пиво, он отправляет владельцу срочную смску с предупреждением или сам делает заказ в магазине.
  • Распознавание аэрофотоснимков для анализа развития территорий ().
  • Избитая идея для Fashion-стартапа, когда по картинке определяется, что надето на человеке, и ищется максимально похожая одежда в ближайших магазинах. Кстати, если кому-то интересно, есть открытый датасет со шмотками.
Разумеется, не обошлось без рекламы двух своих продуктов: Cognitive Toolkit (CNTK) и Custom Vision – облачного сервиса для классификации изображений.

Я решил протестировать функционал Custom Vision и попробовал научить бинарную модель классификации отличать хипстеров от гопников. Для этого загрузил около 1000 изображений, из поиска Google Images. Никакой предобработки не делал, загружал как есть.

Модель обучалась несколько минут и в целом результаты получились неплохие (Precision: 78%, Recall: 89%). Да и на новых примерах классификатор работает корректно (см. ниже).

Антихайп

Интересно, что на конференции много докладов было связано с развенчанием мифов. Поскольку тема хайповая, пишут о ней много и не всегда по делу.

Очень часто звучала такая мысль: существующие сегодня нейронные сети нельзя назвать полноценным интеллектом. Пока это лишь его очень грубая модель, частично обладающая свойством обучаемости, но очень плохо обобщающая и лишенная того, что называют «common sense». Многие спикеры сходились в том, что для разработки действительно «умного» интеллекта потребуется не один десяток лет. Пока что мы даже толком не знаем, как работает мозг, не говоря уже о том, чтобы создать его полноценный искусственный аналог.

Сегодня не существует однозначного определения понятия «искусственный интеллект», но большинство экспертов сходится, что такой интеллект должен обладать набором базовых способностей, присущих человеческому, в частности умением:

  • обучаться,
  • планировать и решать поставленные задачи,
  • обобщать,
  • коммуницировать с людьми.
Определенных успехов мы добились, пожалуй, только в способности обучения, а все остальное остается на очень базовом уровне. Потенциал развития искусственного интеллекта в ближайшие годы видится как раз в развитии этих характеристик.

Про One-shot Learning и Transfer Learing

Обучение с учителем – стандартный подход сегодня, однако он все чаще критикуется. Несколько раз звучала интересная мысль о том, что будущее машинного обучения за обучением без учителя, или по крайней мере роль учителя будет уменьшаться.

Ведь чтобы понять, что не стоит совать пальцы в розетку, человеку в отличие от нейросети не нужно 10 тысяч раз повторять этот опыт, и обычно он запоминает с первого (хотя не все, конечно). Помимо базовых инстинктов человек обладает неким здравым смыслом, предобученной базой знаний, которая позволяет ему легко делать обобщения. Есть гипотеза, что она заложена в сформировавшийся за годы эволюции неокортекс – присущую только высшим млекопитающим часть мозга, отвечающую за обучение.

Поэтому одно из направлений развития ИИ, которым сейчас активно занимается сообщество, – продвижение подхода One-shot Learning – вида обучения, при котором алгоритм способен делать обобщения, анализируя очень небольшое количество обучающих кейсов (в идеале один). В перспективе машины при принятии решения должны будут моделировать возможные ситуации, а не просто повторять решение на основе опыта. Способность обобщать – неотъемлемая черта любого интеллекта.

Чтобы проиллюстрировать сказанное, найдите в двух наборах ниже объекты, аналогичные выделенным. В отличие от компьютерной программы, человек, как правило, довольно легко справляется с этой задачей.

Еще одна близкая тема – это использование так называемого Transfer Learning – модели обучения, при которой предварительно обучается некая универсальная «грубая» модель, а затем для решения более специфических задач она дообучается уже на новых данных. Главное преимущество в том, что процесс обучения в этом случае выполняется в разы быстрее.

Чаще этот термин употребляется в контексте компьютерного зрения, но на самом деле идея легко обобщается на любые задачи ИИ. В качестве примера – многочисленные предобученные сети для распознавания изображений от Google или Microsoft. Эти сети натренированы распознавать базовые элементы изображения, для решения же конкретных задач необходимо дообучить всего несколько выходных слоев такой сети.

Вместо заключения

В целом поездка оказалась весьма поучительной и дала немало пищи для размышлений. Всегда приятно оказаться в компании профессионалов, которые занимаются примерно тем же, что и ты. Резюмировать мои впечатления от конференции, наверное, можно так: несмотря на то, что до создания настоящего искусственного интеллекта человечеству еще далеко, тема сегодня развивается семимильными шагами и находит все новые точки приложения в совешенно разных и порой неожиданных областях. Технологии, которые пару лет назад считались экзотикой, постепенно становятся новым стандартом.

Следующая конференция данной серии планируется в апреле 2018 года.

Теги:

  • искусственный интеллект
  • O’Reilly
  • Strata Artificial Intelligence
  • CleverDATA
Добавить метки

Искусственный интеллект (ИИ) - тема, которая уже давно не сходит со страниц научно-популярных журналов и постоянно затрагивается в кино и книгах. Чем больше специалисты развивают эту область науки, тем большими мифами она покрывается.

Развитие и будущее искусственного интеллекта волнует и тех, кто стоит у руля государства. Не так давно президент РФ Владимир Путин посетил офис Яндекса в день 20-летия компании, где ему объяснили, когда ИИ превзойдет человеческий интеллект.

Все, кто хоть немного проникает в суть потенциала искусственного интеллекта, понимают, что оставлять без внимания эту тему нельзя. Это не только важная тема для обсуждения, но и, наверное, одна из самых значимых в контексте будущего.

Словом, заметные успехи есть и у нас в стране.

Чем быстрее развиваются технологии искусственного интеллекта, тем сильнее людей захватывает опасение - как быстро они останутся без работы. Все действительно так плохо?

И да, и нет. Человечество уже несколько раз сталкивалось с возникновением технологий, революционно изменивших всю производственную сферу.

Так было с паровым двигателем в эпоху промышленной революции практически уничтожившим многие профессии (в основном, связанные с примитивным физическим трудом), так было с электронными вычислительными машинами, которые заменили человека в задачах, основанных на поточных математических расчётах.

В XV-XVIII вв.еках, когда в Англии «овцы съели людей», социальные последствия были действительно катастрофическими. Англия потеряла по разным оценкам от 7 до 30% своего населения. Властная элита того времени была всерьёз озабочена тем, куда девать лишних людей. Джонатан Свифт откликнулся на эти искания юмористическим памфлетом, в котором предлагал употреблять детей бедняков в пищу.

Однако в наши дни мы видим, что на смену вымершим профессиям пришли новые, и население Земли куда больше, чем в XVIII веке. В XX веке последствия автоматизации были уже не столь катастрофичны с социальной точки зрения. Однако недооценивать опасность всё-таки не стоит.

«Через 30 лет роботы смогут делать практически всё, что умеют делать люди, - такой прогноз дал Моше Варди (Moshe Vardi), профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди (Ken Kennedy Institute for Information Technology) при Университете Райса (William Marsh Rice University). Это приведёт к тому, что более 50% жителей Земли станут безработными».

Роботы забирают работы

На днях председатель комитета Госдумы по информационной политике, информационных технологиям и связи Леонид Левин заявил, что для России является важной проблема вытеснения рабочей силы искусственным интеллектом.

Рано или поздно людей заменят автоматизированной системой, и на рынок выплеснется 2% работоспособного населения страны. Именно поэтому о том, как их трудоустроить, тех, кто потеряет работу вследствие развития цифровых технологий, нужно думать уже сейчас сказал Левин.

По мнению председателя, уже в скором будущем мы столкнемся с ростом безработицы. Но действительно ли роботы «отберут» наши рабочие места и стоит ли беспокоиться по этому поводу рассказал «Ридусу» специалист по машинному обучению Сергей Марков.

Сергей, даже сейчас уже есть «мертвые профессии», которые не требуют человеческого труда, хотя, казалось бы, лет 10 назад никто и не думал, что, например, кондуктора скоро станут ненужными. А какие еще профессии вытеснят технологии?

Мы приближаемся к тому времени, когда машины превзойдут людей почти в любом деле. Я считаю, что обществу нужно посмотреть в лицо этой проблеме до того, как она встанет во весь рост. Если машины будут способны делать почти всё, что умеют люди, что тем останется делать? сказал Моше Варди, профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди при Университете Райса.

Долгое время на пути автоматизации стояли технологические ограничения - машины не могли распознавать образы и речь, не могли говорить, не могли достаточно хорошо понимать смысл высказываний на естественном языке, не имели достаточно данных для того, чтобы научиться многим привычным для человека вещам.

Благодаря последним достижениям в сфере искусственного интеллекта многие из этих ограничений фактически оказались сняты. Кроме того, многие профессии сами претерпели трансформацию, что сделало их более удобными для автоматизации.

Например, современный офисный клерк ведёт переписку не в бумажном, а в электронном виде, бухгалтер выполняет проводки не на бумаге, а в бухгалтерской программе, оператор станка управляет станком зачастую не при помощи рукоятей, а при помощи управляющей программы. Поэтому сейчас задача автоматизации во многих профессиях перестала быть научной и стала чисто инженерной.

Правда пока что производственная сфера, связанная с ИИ, скорее создаёт рабочие места - нужны специалисты в области машинного обучения и подготовки данных, сотрудники для разметки обучающих массивов, специалисты по внедрению и т. д. Но в какой-то момент электроовцы определённо начнут есть людей, и о последствиях нужно позаботиться уже сейчас.

При этом важно понимать, что остановить технический прогресс нельзя, и попытка это сделать обернётся куда более катастрофичными последствиями.

Мы сможем когда-нибудь полностью довериться роботам (ИИ), или все-таки в любом деле должен быть человеческий фактор?

У этого вопроса есть несколько аспектов. С одной стороны, люди в прошлом с опаской относились практически к любой технике. Первый лифт, первый автомобиль, первый поезд или самолёт - всё это когда-то было непривычным, и многим казалось опасным. Да во многом опасным и было - техногенные катастрофы унесли немало жизней.

И тем не менее в наши дни все эти вещи стали привычными и уже не вызывают сильного страха. В этом смысле - наши потомки будут относиться к системам ИИ более спокойно. Люди порой склонны мистифицировать вещи, которые им непонятны. Дикарь думает, что в паровозе живёт злой дух, а современный обыватель думает, что наши системы ИИ обладают сознанием, хотя это далеко не так.

С другой стороны, я не думаю, что универсальные системы ИИ когда-либо станут частью нашей производственной сферы. На мой взгляд будущее скорее за синтетическими системами - то есть за объединением человека и машины в единый организм. В этом смысле искусственным интеллектом будущего будет усовершенствованный человеческий интеллект.

Кстати говоря, человеческий интеллект тоже не совсем корректно называть естественным. Ребёнок от рождения не обладает интеллектом, всему его учит общество, родители, окружающая среда. В этом смысле мы с вами все по сути дела «искусственные интеллекты», и наши страхи, связанные с ИИ, во многом являются страхами перед самими собой.

Последнее время многие ученые, например, Стивен Хокинг , Билл Гейтс или тот же Илон Маск , начали паниковать, что ИИ обрекает человечество на гибель, а будущее они видят какой-то антиутопией. Стоит ли воспринимать такие прогнозы всерьез?

Честно говоря, я бы не спешил всерьёз пугаться этих заявлений. Стивен Хокинг, безусловно, не является специалистом в области ИИ, как, в общем-то, и Илон Маск.

На другой чаше весов высказывания таких людей, как например, Эндрю Ын - американский учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники и машинного обучения, ведущий специалист лаборатории искусственного интеллекта китайской корпорации Baidu .

Ын, говоря о проблеме безопасности ИИ, сравнивает её с проблемой перенаселения Марса - конечно, мы когда-нибудь колонизируем Марс, и тогда, возможно, в какой-то момент там возникнет проблема перенаселения. Но стоит ли заниматься ей сегодня?

Марк Цукерберг также довольно скептически отнёсся к заявлениям Маска. «Искусственный интеллект сделает в будущем нашу жизнь лучше, а предсказывать конец света очень безответственно», - заявил он.

Лично я думаю, что высказывания Маска стоит рассматривать в прагматическом ключе - Маск хочет застолбить эту тему и в идеале получить от государства средства для её разработки.

Неужели все так безоблачно и не о чем беспокоиться?

Реальные опасности, связанные с развитием ИИ, лежат, на мой взгляд, совсем в иной плоскости, чем об этом принято думать. Главные риски связаны не с тем, что мы своими создадим «Скайнет», который поработит человечество. Риски от внедрения технологий ИИ и машинного обучения куда более прозаичны.

Доверяя решение важных вопросов тем или иным математическим моделям, мы можем пострадать от ошибок, допущенных при их разработке. Искусственный интеллект, воспроизводящий действия людей-экспертов, унаследует их ошибки и предубеждения. Недоработки в системах управления производством или транспортом могут привести к катастрофам.

Вмешательство злоумышленников в работу жизненно важных систем в условиях тотальной автоматизации может повлечь опасные последствия. Чем сложнее системы, тем больше в них может быть потенциальных уязвимостей, в том числе связанных со спецификой тех или иных алгоритмов искусственного интеллекта.

Безусловно, для управления этими рисками следует создавать законодательную базу, разумные регламенты безопасности, специальные методы для выявления уязвимостей. Одни системы ИИ будут использоваться для контроля других. Возможно, код жизненно важных систем будет обязателен к публикации для независимого аудита. Словом, специалистам в этой сфере предстоит ещё много работы.

В мае 2017 года скончался полковник Станислав Петров. Этот офицер в 1983 году своими профессиональными действиями предотвратил ядерную войну. Во время его дежурства пришел сигнал со спутников наблюдения о старте нескольких ракет с территории США. Ядерная атака. Петров должен был принять роковое решение. В этой критической ситуации он мгновенно перепроверил информацию по другим источникам и принял решение, что это - ложная тревога. Возможный ответный ядерный удар не состоялся. Подобные ситуации бывали и в американских ядерных силах. И всякий раз, к нашему счастью, люди принимали верное решение.

А вот искусственный интеллект - какое он принял бы решение в такой ситуации? Человек ведь существо моральное. Станислав Петров осознавал цену своего решения с нравственных позиций. Ученые смогут впихнуть в искусственный интеллект мораль? Это первый вопрос. А второй: если этот искусственный интеллект будет сам развиваться, это саморазвивающаяся система, он, может быть, себе свою новую мораль придумает. И совсем не такую, как наша. И в этой его моральной системе, мы, люди, не окажемся лишними?

Когда была осознана колоссальная разрушительная мощь ядерного оружия, сразу заговорили о невозможности его применения. Цена будет слишком велика. А сейчас, когда человечество, возможно, стоит на пороге создания искусственного интеллекта, кто-нибудь обсуждает серьезно опасности и риски? Почти все пребывают в состоянии эйфории: какие новые возможности перед нами открываются! Может, и открываются, а может, и закрываются.

Еще совсем недавно это казалось фантастикой, и вот уже безнадежно устарело - бросать компьютерный чип в кипящую сталь в попытке предотвратить восстание машин теперь бесполезно, микропроцессоры куда более мощные, чем у Терминатора образца 1991 года. Сейчас повсюду искусственный разум стремится к человеческому, а люди, кажется, приняли грядущее уничтожение как нечто неизбежное.

Видео телеканала CNBC:

Ты хочешь уничтожить людей? Пожалуйста, скажи «нет!»

Ок, я уничтожу людей, - отвечает робот София.

У современного Терминатора черты лица актрисы Одри Хэпберн - по крайней мере, так говорят разработчики - робот София способна поддержать разговор, повторяет мимику человека, но когда шутит про уничтожение людей, почему-то не улыбается.

На этой неделе в торжественной обстановке София получила гражданство Саудовской Аравии - страны, которая вкладывает сотни миллионов долларов в развитие технологии искусственного интеллекта. Это передовое направление, без которого будущее уже не представляет себе не только крупный бизнес, но и правительства многих государств. Какие бы риски это будущее в себе ни таило. Потеря контроля над цифровым разумом лишь один из вариантов. Угроза может показаться не вполне конкретной - но футурологи готовы привести примеры.

«Два искусственных военных интеллекта в двух странах могут вступить в войну, которая продлится несколько миллисекунд и люди не успеют заметить, как они все будут уничтожены», - говорит футуролог Алексей Турчин.

Фантастика? Возможно, но локальная война двух компьютерных трейдеров уже однажды обрушила биржевые индексы - просто потому что боты друг за другом вдруг решили продавать акции. В результате этой виртуальной битвы совершенно конкретные люди потеряли много настоящих денег.

«Алгоритмы, которые были сделаны для того, чтобы приносить прибыль всем участникам, вдруг начали работать так, что они начали приносить убытки всем участникам, потому что были не предусмотрены последствия работы. А очень трудно предусмотреть все последствия работы искусственного интеллекта», - поясняет Алексей Турчин.

Программисты Фейсбука тоже не предполагали, что сетевые чат-боты, или попросту разговорные агенты, пройдут тест на коммуникацию с таким результатом: диалог на английском превратился в бессмысленный набор слов, а то и букв, но это для человека - цифровому разуму язык людей показался неудобным способом договориться. Другими словами - машина может лучше. И это еще одна угроза.

«Первое, что произойдет, это то, что очень многие люди потеряют работу из-за автоматизации и роботизации производства. Так, по некоторым оценкам, в США до 2030 года из-за этого могут быть ликвидированы около 47% рабочих мест», - говорит профессор теоретической философии в университете имени Иоганна Гутенберга Томас Метцингер.

Казалось бы, все это далеко и даже не очень скоро - но и в России искусственный интеллект уже лишил кое-кого работы - виртуальная помощница Инна заменила собой справочную службу Казанского Иннополиса.

«Мы автоматизировали на 100% все рутинные обращения и вот с 19 июня этого года Инна уже обработала чуть больше 15 тысяч обращений, на которые раньше отвечал живой человек, а теперь этот механизм отвечает автоматически», - рассказывает директор по маркетинговым коммуникациям города Иннополис Артем Фатхуллин.

Инна, конечно специалист в узкой области - ей, как и любой другой программе пока очень далеко до человека - но ключевое слово именно «пока».

«100 лучших экспертов мира в области искусственного интеллекта полагают, что между 2070 и 2100 годами, а возможно, и в 2050 году появится искусственный сверхразум, который будет действовать как минимум на уровне человека, а то и недосягаемо превосходить его. Вопрос состоит в том, что если саморазвивающийся искусственный интеллект когда-либо превзойдет когнитивную силу человека, то как нам сделать так, чтобы он оставался мирным и чтобы его цели совпадали с нашими», - говорит Томас Метцингер.

Ответа на этот вопрос на самом деле до сих пор не существует - человечество тратит миллиарды на развитие искусственного разума, как будто нарочно приближая тот день, кода он поймет, что создатели ему больше не нужны.

«Я часто использую такую аналогию - когда мы, например, расширяем дом, мы не советуемся с червяками, жуками и разными насекомыми на заднем дворе, перед тем, как начать стройку. Они же настолько ниже нас, что мы просто не обращаем на них внимания. Вот какой может быть разница между искусственным интеллектом будущего и человеком», - отмечает глава футурологического института Futurizon (Великобритания) Ян Пирсон.

Кто-то, конечно, может посоветовать футурологам надеть шапочку из фольги и спрятаться под стол - но главу компании Tesla Илона Маска точно не заподозришь в технофобии - с его-то проектами SpaceX или Hyperloop и серьезными инвестициями в создание нейросетей. Но именно он уже не раз предупреждал об опасности.

«Вы знаете, что у меня есть доступ к самым последним разработкам в области искусственного интеллекта. И я думаю, что людям действительно следует озаботиться этим. Может показаться, что я поднимаю панику, но пока человечество не увидит, как роботы идут по улицам и убивают людей, они не будут знать, как реагировать. Ведь это выглядит таким нереальным, но я уверен, что нам действительно стоит волноваться насчет искусственного интеллекта», - заявил Илон Маск.

Маск предлагает регулировать развитие технологии на государственном уровне - и в то же время своего рода аппаратный апгрейд мозга - с помощью нейросетей нового поколения, выходит, чтобы не отстать от машин будущего, человеку самому придется стать машиной.

Искусственный интеллект развивается куда быстрее, чем могли предположить его создатели - нас окружают миллионы устройств, которые по вычислительным способностям значительно куда умнее человека. Теперь представьте следующий этап, когда мозг станет частью этой сети: вроде возможности открываются безграничные - не нужно учить языки, вообще любые накопленные человечеством знания легко скачать прямо в голову, но с другой стороны человек фактически становится флэшкой. Какая уж тут индивидуальность или несвойственная машинам способность мыслить нестандартно! Да и вообще любую флешку можно отформатировать…

Сейчас нам только кажется, что мы способны обрабатывать все новые потоки информации из нескольких источников сразу - в реальности человек просто теряет элементарные способности, доверившись технологиям. Машины и так уже многое делают за нас - автомобили сами паркуются, поисковики в интернете готовы ответить на любой вопрос, виртуальные помощники сами звонят нашим друзьям. Лень как двигатель прогресса. Выходит, «двое из ларца» здорово поумнели с тех пор, как человечество открыло ящик Пандоры.

Вы что это, и конфеты за меня есть будете?

Человечество пока не полетело к звёздам. Да что там говорить, оно не совершило даже пилотируемые полёты к Венере и Марсу, которые фантасты прошлого века считали делом ближайшего будущего. Но кое в чём наша цивилизация превзошла самые смелые прогнозы. Лишь немногие фантасты тридцать-сорок лет назад предвидели появление сотовой связи и интернета. И даже они не представляли, как велика будет роль этих изобретений в повседневной жизни человека.

Поступь прогресса

Электроника совершенствуется стремительно, и, вероятно, темпы её прогресса не снизятся ещё полтора-два десятилетия. Но не стоит опасаться (или надеяться), что они останутся неизменными на протяжении столетий.

Развитие технологий происходит рывками. Так, иначе машина устаревала, ещё не родившись. А потом - как отрезало. Многие самолёты, сконструированные в 1950-е, выпускают до сих пор. Ценой титанических усилий раз в 5-10 лет создают новые модели, которые чуть-чуть безопаснее, немного экономичнее, слегка комфортнее, зато в разы дороже предыдущих.

Прогресс не остановился, но темпы его замедлились до нормы. В определённый момент изделие начинает так хорошо отвечать назначению, что улучшить его сложно, да и не нужно. Взять хотя бы топор: сильно ли его усовершенствовали за последнюю тысячу лет?

Сверхзвуковые авиалайнеры «Конкорд» и Ту-144 - яркая иллюстрация «ограниченности» прогресса. Летать быстрее 800-900 км/ч пассажирскому самолёту оказалось не нужно и слишком дорого, и их вывели из эксплуатации

Сравнение мобильных устройств - телефонов, ноутбуков, планшетов, навигаторов - с топором вполне уместно. Они столь же распространены, только дороже и куда надёжнее. Последнее может показаться спорным: электроника ломается то и дело, а топор, купленный дедом, как лежал на даче, так и будет лежать в полной исправности. Но это потому, что топором пользуются редко. Если тратить на рубку дров столько же времени, сколько на разговоры по мобильнику, станет ясно - телефон-то покрепче будет.

Перспективы усовершенствования электронники необъятны. Но фантасты могут спать спокойно: принципиально цифровые друзья человека почти не изменятся, когда будет достигнут потолок целесообразности. А современный мобильный телефон уже решает большинство задач в области связи, навигации и получения информации. Конечно, лет через 20 технологии позволят сделать его в сто раз миниатюрнее и даже встроить в человеческое тело. Но принцип останется тем же.

Следует ожидать объединения разных мобильных устройств в одно, оптимизированное для постоянного ношения и использования. Оборудование карманного компьютера 19-дюймовым монитором и полноценной клавиатурой представляет собой задачу нетривиальную, но разрешимую. Можно, например, представить гибкий сенсорный экран.

Прогресс вычислительной техники огромен даже за последние пять лет. А вот современные ракеты-носители принципиально не отличаются от разработок Цандера и Королёва

Предпосылки ИИ

В прошлом футурологи опасались, что машины, вытеснив человека из сферы производства, вызовут массовую безработицу. Таким мир торжествующих технологий видел, например, в опубликованном в 1952 году романе «Механическое пианино». Пессимизмом, в сущности, проникнуты и утопии советских авторов, воображение которых рисовало картины поужаснее воннегутовской антиутопии. Предполагалось, что при коммунизме машины заменят человека всюду, где не требуется творческий подход.

К творчеству же большинство людей - давайте смотреть правде в глаза - не способны. В чём легко убедиться в наше время, поглядев в интернете на массу горе-графоманов и горе-музыкантов. Этот момент хорошо обыгран в «Сказке о тройке» : пришелец Константин работает читателем скверных стихов - должен же их хоть кто-то читать! Его труд справедливо считается тяжёлым и вредным для здоровья.

Воннегут совершил ошибку, типичную для мыслителей конца XIX - середины XX века, исходивших из идеи, что у человека есть некий «разумный» уровень потребностей. Философы не учитывали, что технический прогресс удовлетворяет потребности, им же и порождённые. Обеспечивать население персональными автомобилями или персональными компьютерами не планировалось, пока автомобили и компьютеры не были изобретены, - то есть предложение здесь рождает спрос.

Британские учёные полагают, что мозг человека, оставленный электроникой без работы, в будущем начнёт уменьшаться, постепенно сократившись до размера мозга британского учёного (кадр из « »)

Машины заменили людей у станков и на пашне, но это не вызвало массовой безработицы. Освобождённые от физического труда массы были поглощены сферами управления и обслуживания. Цивилизация вошла в постиндустриальную стадию, и вдруг стало ясно, что производство как таковое вообще не представляет собой проблему. Выпуск любого товара в любом количестве можно в любой момент организовать в любой точке Китая.

Загвоздка только в реализации продукта. Значит, главный трудяга, создающий богатство нации, - скромный менеджер, изредка поднимающий телефонную трубку и неохотно отрывающийся от жизни в соцсетях, чтобы переложить файл из одной папки в другую. И это перекладывание ныне создаёт прибавочную стоимость, за которую менеджеру платят деньги.

Технический прогресс не вызвал социальной катастрофы - можно не опасаться этого и в будущем. Даже если роботы сумеют согнать с насиженных мест офисный планктон, останется ещё сфера услуг. Появятся новые специальности - хотя бы те же профессиональные читатели. Должен же кто-то принять на себя удар несущейся на человека информационной лавины? Специально обученные люди встанут на пути неконтролируемо множащихся публикаций, отбирая из тысяч те немногие, которые стоит читать (пахнет цензурой, не так ли?).

Куда важнее другой факт, ещё не осознанный, но уже свершившийся. Освободив человека от физического труда, машина начинает брать на себя и функции его мозга. Многие ли умеют сегодня умножать в столбик и грамотно писать без помощи «спеллчекера»? Впрочем, разобрать каракули, написанные на бумаге привыкшей к клавиатуре рукой, всё равно невозможно.

Доступ к информации и её фиксация упростились до предела. Электроника не просто дополняет человеческую память - всё чаще она её заменяет. А всякая способность утрачивается без упражнения. Можно безуспешно бороться с этой тенденцией, а можно смириться с тем, что до конца века фундаментальные признаки грамотности - умение считать и писать - постигнет участь стрельбы из лука. Когда-то владеть этим икусством было необходимо, потом - полезно, потом бесполезно, но принято. Наконец стрельба превратилась в спорт. Пожалуй, лет через 50 устный счёт и чистописание включат в программу Олимпиады.

Конечно, ситуация внушает беспокойство. Вдруг потребуется помножить семь на восемь, а калькулятора не будет под рукой? Подобные сомнения наверняка терзали и австралопитека, впервые взявшего в руку камень. Привыкнешь, думал он, а потом понадобится раздробить кость, а камня нет. Но если бы австралопитек, побоявшись остаться без камня, принялся упражнять челюсти, это не только оказалось бы глупостью, но и направило бы эволюцию в совершенно иное, не ведущее к человеку разумному русло. Наша сила, грозящая вот-вот стать богоравной, - именно в нашей неспособности обойтись без орудий.

Мир меняется. Умение считать заменяется умением пользоваться калькулятором (точнее, уже компьютером). Значит, именно обращению с этим устройством следует учить. Для того же, чтобы владеть калькулятором, требуется понимать суть арифметических действий, тригонометрических функций, возведения в степень, извлечения корня, логарифма. А знать таблицу умножения - излишне.

Тест Тьюринга

Ограничится ли дело только лишь памятью и способностью к счёту? Что ещё может заменить (а значит, неизбежно заменит) искусственный интеллект? В 1950 году математик Алан Тьюринг предложил оценивать искусственный интеллект по умению программы выдать себя за человека. Если квалифицированный, специально готовившийся к испытанию экзаменатор, знающий, что один из его невидимых собеседников робот, а второй - человек, в 30% случаев ошибётся, пытаясь определить, кто есть кто, - можно считать, что машина научилась мыслить. Почему 30 процентов, а не 50, которые означали бы, что различий нет в принципе и угадать удаётся только случайно? Потому что для действительно безупречного притворства необходим некий «запас прочности», вот и всё.

Победа компьютера, обоснованно полагал Тьюринг, будет означать, что машина способна заменить человека. Робота можно посадить на телефон, и на другом конце провода никто не заметит разницы. Программа скажет то, что сказал бы человек, и даже отдаст такие же распоряжения, которые отдал бы человек на её месте.

Чемпион мира по шахматам Гарри Каспаров играет против компьютера Deep Blue в 1997 году. Каспаров проиграл, расстроился, отказался признавать результаты матча и зарёкся впредь играть с роботами

Сейчас боты вплотную подошли к преодолению барьера. Пессимисты считают, что он будет преодолён в ближайшие 15 лет, оптимисты же полагают, что успех уже пора отмечать. В августе 2012 года российская программа «Евгений» набрала на тесте 29,2%. А ведь речь идёт о состязании робота со специалистами, пытающимися разоблачить бота изощрёнными и каверзными методами.

В ближайшем будущем реальностью станет то, на что у фантастов не хватает воображения. Появятся, например, телефоны, которые сами, через неравные (чтобы пунктуальность не показалась подозрительной) промежутки времени будут обзванивать пожилых родственников хозяина, справляясь об их здоровье, терпеливо выслушивать пересказы сериалов, анализировать рост цен на гречку и вступать в полемику о воспитании пуделей. В рабочее время такой аппарат сможет вести переговоры с клиентами и лепетать оправдания, услышав в трубке начальственный голос. Обладатель которого, впрочем, в этот момент будет рубиться на том же игровом сервере, что и подчинённые, поручив имитацию руководства своему телефону.

Речь идёт лишь об имитации, не так ли? Робот продаёт морозильное оборудование, общается на форуме, причём постит страшную чушь, и его даже банят за хамство… Программа не думает, а лишь симулирует мыслительный процесс человека, просчитывая, какие решения могли бы быть приняты им в данной ситуации. Но и шахматный суперкомпьютер на самом-то деле в шахматы не играет. Он просто преобразует входящий сигнал по сложному алгоритму.

А не замахнуться ли нам…

Какая разница между «мыслит» и «не мыслит», если результат одинаков? Где граница между качественной подделкой, доступной уже сейчас, и остающимся фантастикой разумным дроидом C-3PO из кинофильма «Звёздные войны»? Теоретически разницу можно будет заметить. Например, виртуальный менеджер среднего звена, удостоверившись, что фотография на личной странице девушки отвечает критериям привлекательности, будет пытаться назначить ей свидание, не замечая, что это фотография Миллы Йовович времён «Пятого элемента». Человек такой ошибки не совершит.

Но это в теории. В реальности программа будет знать в тысячу раз больше уловок и методов их распознавания, чем живой пользователь. И уж подавно больше, чем обаятельный, но простодушный дроид. Скорее всего, бот просто взломает сервер и сверит фотографию с паспортными данными.

Для C-3PO каждый разговор с человеком - успешно пройденный тест Тьюринга. В отличие от реальных программ, робот из «Звёздных войн» разумен и обладает не только интеллектом, но и чувствами

Тем не менее разум - нечто большее, чем интеллект. Разумной можно назвать лишь машину, обладающую волей и сознанием. И как взяться за её создание, не слишком-то ясно. Не потому, что сознание - столь уж великая тайна. Просто появ ление «железа», способного потянуть такой софт, ожидается только лет через сорок. И это при сохранении прежних темпов развития электроники, на что вряд ли можно рассчитывать.

В природе программы - безусловные рефлексы - пишутся путём отбора мутаций, затрагивающих нервную систему. Это крайне непроизводительный метод, который обеспечивает приемлемые результаты лишь для видов, отличающихся плодовитостью. Именно по этой причине у позвоночных эволюция пошла другим путём. Долгоживущее существо анализирует опыт, вычленяя связи между событиями, затем сопоставляет между собой выявленные закономерности, - и так без конца. Для приобретения условных рефлексов требуется большой и свободный от «врождённого софта» мозг. Метод очень трудоёмок, но потенциально позволяет приспосабливаться к любым условиям.

Но боту не нужно накапливать и анализировать личный опыт. У него есть программист, способный научить всему сразу, а не постепенно, за миллион лет отбора. Поэтому непонятно, стоит ли в принципе браться за создание подлинного машинного разума, если проще написать программу, воспроизводящую любые реакции настоящего C-3PO на внешние раздражители. Благо они столь же предсказуемы, как и у человека. Поддерживая беседу, бот мастерски будет разыгрывать наивность, тугодумие и затруднённую речь, якобы характерные для разумных роботов. Оснащённый интеллектом, но не разумом, бот будет подконтролен - программа не взбунтуется против создателей. Она не личность и не живёт, а значит, удаляя её с диска, не придётся терзаться угрызениями совести.

При этом бот может обучаться и даже способен к творчеству. Программы уже давно пишут музыку, расставляя семь нот в порядке, соответствующем человеческим представлениям о гармонии, - живым композиторам далеко не всегда это удаётся! Боты способны даже делать изобретения, ведь всё новое - это удачная комбинация уже существующих элементов, а просчёт комбинаций - сильное место машин.

Вьетнамский робот-художник Tosy SketRobo создаёт чёрно-белые скетчи, но лишь в рамках заданной программы. Воображения робот лишён

Перспективные направления

Киборгизация

Замена человеческих органов электронными протезами - перспективное направление в трансплантологии. Как далеко может зайти слияние человека с машиной?

В будущем наверняка появится возможность производить крошечные компьютеры, пригодные для вшивания под кожу. Способность подключаться к интернету и по мысленному запросу получать из Сети любые сведения прямо в мозг, минуя органы чувств, кажется привлекательной, особенно на экзаменах. Но в достаточной ли мере человек контролирует свои мысли для того, чтобы управлять таким устройством? И даже если решить эту проблему, останется вторая: мозг не будет расценивать сигнал, поступающий не с глазного нерва, как зрительную информацию.

Знание не возникнет ниоткуда. Человеку по-прежнему придётся читать либо прослушивать текст. Не удобнее ли в таком случае по старинке пользоваться наушниками и экраном? Во всяком случае, это позволит избежать сложной и небезопасной операции по вживлению электродов в нервные волокна.

Кибертранспорт

Ещё в 1988 году автопилот поднял, свёл с орбиты и посадил космический корабль «Буран». А эта задача сложнее, чем управление автомобилем

Уже сегодня сотовый телефон умеет практически всё, но функции грядущего универсального мобильного устройства окажутся ещё шире. Почему, например, навигатор в телефоне лишь подсказывает, куда и когда следует повернуть? Если он такой умный, пусть сам и рулит.

Конечно, управление можно возложить и на бортовой компьютер автомобиля, но это явное излишество. Машине незачем двигаться без пассажира, а человек никуда не денется от своего телефона. Таким образом, один электронный интеллект в салоне присутствовать всегда будет. Для чего тогда нужен второй? Телефон можно будет объединить с автомобилем, вставил в слот - и поехал.

Автомобиль с автопилотом - не фантастика уже сегодня. Конечно, нетрудно представить себе ситуацию на дороге, с которой робот не справится. Но - будем откровенны - представить себе ситуацию, с которой не справится человек, несравненно проще.

Нанороботы

В романах «Непобедимый», «Осмотр на месте», а также в нескольких других произведениях Станислав Лем высказывает предположение, что мы неправильно строим машины. Место больших автоматов должны занять крошечные, однообразные элементы (наноботы), при необходимости образующие из своих тел любые другие конструкции. В том числе и мозг.

Только на таком принципе, кстати, можно создать встречающиеся в фантастике «экспоненциальные машины», которые расширенно воспроизводят себя без участия человека и одновременно совершают какую-то полезную работу. Автомат традиционного типа слишком сложен для размножения, так как состоит из множества деталей, для производства которых требуется разнообразное оборудование, заведомо не помещающееся внутри самой машины.

Аналогия с клетками, составляющими человеческое тело, бросается в глаза. Но, несмотря на впечатляющие успехи миниатюризации, дело не выгорит. Проблема в том, что наши роботы - твёрдые. А все процессы, протекающие в живых организмах, имеют химическую природу и происходят в растворе. Воспроизвести клетку можно, работы в этом направлении уже близки к завершению, но при этом реальная экспоненциальная машина будет просто живым существом со всеми присущими ему слабостями.

* * *

Что бы там ни воображали фантасты, восстания машин не будет. Искусственный интеллект в современном понимании - не более чем имитация. Другой вопрос, насколько реалистичной она может быть. Если робот подумает, что для людей характерно уничтожение себе подобных (а оно, к слову, характерно), он начнёт это уничтожение имитировать. И смешно не покажется. Поэтому три закона Азимова нам всё-таки пригодятся.