Бинарные отношения. Операции над бинарными отношениями Понятие отношения свойства отношений

Элементы множества, как правило, находятся в каком-либо отношении друг относительно друга. Эти отношения можно задать в виде неполных предложений -- предикатов, например, «меньше, чем...», «больше, чем...», «эквивалентно», «конгруэнтно» и т. п.

Тот факт, что некоторый элемент находится в каком-либо отношении к элементу того же множества x j , математически записывают как XiRxj, где R -- символ отношения.

Отношение из двух элементов множества X называют бинарным. Бинарные отношения множеств X и Y представляют собой некоторое множество упорядоченных пар (х, у), образованных декартовым произведением X х Y. В общем случае можно говорить не только о множестве упорядоченных пар, но и о множестве упорядоченных троек, четверок элементов и т. д., т. е. о парных отношениях, получаемых в результате декартова произведения , где п -- размерность n -строчек.

Рассмотрим основные виды отношений -- отношения эквивалентности, порядка и доминирования.

Некоторые элементы множеств можно считать эквивалентными в том случае, когда любой из этих элементов при определенных условиях можно заменить другим, т. е. данные элементы находятся вот-ношении эквивалентности. Примерами отношений эквивалентности являются отношения параллельности на множестве прямых какой-либо плоскости; подобия на множестве треугольников; принадлежности к одной функциональной группе микросхем или к одному классу типоразмеров и т. д.

Термин «отношение эквивалентности» будем применять при выполнении следующих условий:

1) каждый элемент эквивалентен самому себе;

2) высказывание, что два элемента являются эквивалентными, не требует уточнения того, какой из элементов рассматривается первым, а какой вторым;

3) два элемента, эквивалентные третьему, эквивалентны между собой.

Введем для обозначения эквивалентности символ ~, тогда рассмотренные условия можно записать следующим образом:

1) х ~ х (рефлективность);

2) х ~ уу ~ х (симметричность);

3) х ~ у и у ~ z х ~ z (транзитивность).

Следовательно, отношение R называют отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пусть некоторому элементу х X эквивалентно некоторое подмножество элементов А X, тогда это подмножество образует класс эквивалентности, эквивалентный х. Очевидно, что все элементы одного и того же класса эквивалентности эквивалентны между собой (свойство транзитивности). Тогда всякий элемент хХ может находиться в одном и только одном классе эквивалентности, т. е. в этом случае множество X разбивается на некоторое непересекающееся подмножество классов эквивалентности , где J -- некоторое множество индексов.

Таким образом, каждому отношению эквивалентности на множестве X соответствует некоторое разбиение множества X на классы.

Часто сталкиваются с отношениями, которые определяют некоторый порядок расположения элементов множества. Например, в процессе автоматизированного конструирования требуется вводить множество одних исходных данных раньше или позже, чем множество других. При этом может оказаться, что элементы одного множества больше или меньше элементов другого и т. д. Во всех этих случаях можно расположить элементы множества X или группы элементов в некотором порядке (например, в виде убывающей или возрастающей последовательности), т. е. ввести отношение порядка на множестве X.

Различают отношения строгого порядка, для которых применяют символы и отношения нестрогого порядка, где используют символы. Эти отношения характеризуются следующими свойствами:

для отношения строгого порядка:

х -- ложно (антирефлексивность);

х<У, а У<х -- взаимоисключаются (несимметричность);

x<у и у -- (транзитивность);

для отношения нестрогого порядка:

х X -- истинно (рефлексивность);

ху и ух х = у -- (антисимметричность);

х у и у z xу z -- (транзитивность).

Множество X называют упорядоченным, если любые два элемента х и у этого множества сравнимы, т. е. если для них выполняется одно из условий: х < у, х = у, у < х.

Упорядоченное множество называют кортежем. В общем случае кортеж -- это последовательность элементов, т. е. совокупность элементов, в которой каждый элемент занимает вполне определенное место. Элементы упорядоченного множества называются компонентами кортежа. Примерами кортежа может служить упорядоченная последовательность чисел арифметической или геометрической прогрессий, последовательность технологических операций при изготовлении какого-либо радиоэлектронного изделия, упорядоченная последовательность установочных позиций печатной платы для закрепления конструктивных элементов.

Во всех этих множествах место каждого элемента вполне определено и не может произвольно изменяться.

При обработке конструкторской информации на ЭВМ часто используют отношения доминирования. Говорят, что хX доминирует над уX, т. е. х>>у, если элемент х в чем-либо превосходит (имеет приоритет) элемент у того же множества. Например, под х можно понимать один из списков данных, который должен поступить на обработку первым. При анализе нескольких конструкций РЭА какой-либо из них должен быть отдан приоритет, так как эта конструкция обладает лучшими, с нашей точки зрения, свойствами, чем другие, т. е. конструкция х доминирует над конструкцией у.

Свойство транзитивности при этом не имеет места. Действительно, если, например, конструкцию х по каким-либо одним параметрам предпочли конструкции у, а конструкцию у по каким-либо другим параметрам предпочли конструкции z, то отсюда еще не следует, что конструкции х должно быть отдано предпочтение по сравнению с конструкцией г.

Отображение множеств. Одним из основных понятий теории множеств является понятие отображения. Если заданы два непустых множества X и Y, то закон, согласно которому каждому элементу xX ставится в соответствие элемента, называют однозначным отображением X в Y или функцией, определенной на X и принимающей значение на Y.

На практике приходится иметь дело и с многозначными отображениями множества X на множестве Y, которые определяют закон, согласно которому каждому элементу хX ставится в соответствие некоторое подмножество , называемое образом элементов. Возможны случаи, когда Гх = 0.

Пусть задано некоторое подмножество АX. Для любого хА образом х является подмножество . Совокупность всех элементов Y, являющихся образами для всех х в А, назовем образом множества А и будем обозначать ГА. В этом случае

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Само понятие «отношение», конечно, вам знакомо. Мы часто его употребляем в речи. Например, мы можем сказать, что я в хороших отношениях со всеми студентами моей группы.

В жизни мы постоянно находимся в различных отношениях и вступаем в различные отношения. С членами своей семьи мы находимся в отношении родства, со школьными товарищами - в отношении дружбы, с руководителями учреждения, где мы учимся или работаем, - в отношении подчинения и т.д. В этом смысле отношение - это определенный характер связи .

В параграфе 2.2 мы говорили об отношениях, которые существуют между математическими объектами. Так, элемент по отношению к множеству находится в отношении принадлежности, два множества могут находиться в отношении включения или равенства.

Сейчас мы рассмотрим отношения, которые могут существовать между элементами множеств. Итак, мы сказали, что отношение, установленное между элементами множеств в рассмотренном примере, называется бинарными.

По существу в примере мы составили сначала декартово произведение заданных множеств, т.е. множество всех пар элементов этих множеств, так, что первый элемент пары принадлежит первому множеству, а второй - второму. Затем мы из множества этих пар выбрали подмножество тех пар, которые показывают, на каком же факультете учится каждый из студентов.

Определение 2.8. Бинарным отношением между множествами Ли В называется любое подмножество декартова произведения Ах В.

Бинарные отношения обычно обозначают буквами греческого алфавита: р («ро»), а («сигма»), |/ («пси») и др.

Если р - некоторое бинарное отношение между множествами А и В, то согласно определению бинарного отношения мы можем записать, что р с с Л х В.

Если пара (а, b ) принадлежит бинарному отношению р, т.е. (а, b ) е р, то говорят, что элемент а находится в отношении р с элементом b , и пишут арб. Так, в приведенном выше примере рассмотрено отношение «учиться на факультете». Тогда можно сказать, что Петр находится в данном отношении с факультетом математики.

Для некоторых отношений в математике существуют определенные знаки. Например,

В связи с тем что бинарное отношение - это множество пар, то, как любое множество, его можно задать либо перечислением этих пар, либо указанием характеристического свойства для выделения из декартова произведения пар, принадлежащих данному отношению.

Пример 2.6

Пусть заданы два числовых множества: А = {1, 3,5} и В = {2, 8, 10}. Зададим бинарное отношение о между этими множествами перечислением: а = {(1, 2), (5, 10)}. Это же отношение мы может задать и характеристическим свойством: бинарное отношение образуют пары чисел, такие что число из первого множества в два раза меньше числа из второго множества.

Пример 2.7

Рассмотрим множество студентов вашей академической группы. Установим в этом множестве отношение «быть другом». Для любой пары студентов академической группы можно сказать, находятся они в данном отношении или нет. Может даже случиться так, что это бинарное отношение будет образовывать пустое множество. В каком случае это будет?

В последнем примере нужно обратить внимание на то, что мы устанавливали отношение не между элементами двух множеств, а между элементами одного множества. Это также возможно и не противоречит определению бинарного отношения. Только в этом случае вместо декартова произведения двух множеств нужно рассмотреть декартов квадрат множества.

Бинарное отношение, заданное на множестве, может иметь разные свойства. Рассмотрим их.

1. Свойство рефлексивности.

Определение 2.9. рефлексивным , если для любого а е Л пара (а> а) е р.

Отношение «

2. Свойство симметричности.

Определение 2.10. Говорят, что бинарное отношение р, заданное на множестве Л, является симметричным , если для любых элементов а и b из Л из того, что пара (а , b ) находится в отношении р, следует, что пара (b , а) находится в отношении р.

Например, отношение равенства, заданное на множестве действительных чисел, симметрично, так как если число k равно числу п } то и число п равно числу k. Симметричным является и отношение «быть другом».

С другой стороны, отношение упорядоченности по величине (

3. Свойство антисимметричности.

Определение 2.11. Говорят, что бинарное отношение р, заданное на множестве Л, является антисимметричным у если для любых элементов а и b из Л из того, что пары (я, /;) и (/;, а) находятся в отношении р, следует, что а = Ь.

Например, отношение упорядоченности по величине на множестве действительных чисел антисимметрично. Ведь если известно, что для чисел х и у выполнено х и у то это означает, что х - у. А вот отношение параллельности прямых не является антисимметричным, так как если прямая / параллельна прямой t и прямая t параллельна прямой /, то это не означает, что прямые / и t совпадают. Они могут быть различны.

4. Свойство транзитивности.

Определение 2.12. Говорят, что бинарное отношение р, заданное на множестве Л, является транзитивным у если для любых элементов а , b и с из Л из того, что пары (я, b ) и (/?, с) находятся в отношении р, следует, что пара (а, с) также находится в отношении р.

Свойством транзитивности обладают отношения упорядоченности по величине, параллельности, отношение «быть родственником».

Отношение перпендикулярности прямых не является транзитивным (покажите это с помощью рисунка). Также по существу не является транзитивным и отношение «быть другом» (хотя и есть присказка, в которой выражено желание о транзитивности этого отношения: «Друг моего друга - мой друг»).

Мы рассмотрели только основные свойства бинарных отношений, которые определяют два широко используемых типа отношений.

Отношением эквивалентности (или эквивалентностью) называется бинарное отношение, которое обладает свойствами рефлексивности, симметричности и транзитивности.

Отношением упорядоченности (или упорядоченностью) называется бинарное отношение, которое обладает свойствами рефлексивности, антисимметричности и транзитивности.

Например, отношение «быть одноклассником» является эквивалентностью, так как оно обладает свойством рефлексивности, симметричности и транзитивности. Отношение «быть не выше ростом» на множестве людей является отношением упорядоченности.

Отношения эквивалентности и упорядоченности имеют очень важное значение в различных областях математики, а эквивалентность используется при выполнении классификаций различных объектов. Для того чтобы это понять, обратимся сначала к такому математическому понятию, как разбиение множества.

Определение 2.13. Разбиением множества/! называется представление этого множества в виде объединения непересекающихся подмножеств, которые называются классами разбиения.

Чтобы проверить, что мы имеем дело с разбиением множества, нужно проверить два условия:

  • объединение полученных при разбиении подмножеств является исходным множеством;
  • пересечение любых двух различных подмножеств является пустым множеством.

При выполнении классификации классами разбиения являются так называемые классы эквивалентности. Как же строятся эти классы?

Пусть на множестве А введено некоторое отношение эквивалентности р. Возьмем любой элемент а из А и все элементы из А, которые находятся с а в отношении р. Все эти элементы и будут образовывать класс эквивалентности элемента а. Понятно, что и сам элемент а попадет в этот класс. Действительно, если р - отношение эквивалентности, то оно обладает свойством рефлексивности, т.е. (а } а) е р, а это и означает, что сам элемент а входит в класс эквивалентности, который он образует.

Можно доказать, что классы эквивалентности различных элементов множества либо совпадают, либо не пересекаются. В связи с этим можно предположить, что эти классы могут рассматриваться в качестве классов разбиения.

Действительно, существует теорема, которая говорит о том, что если на множестве задано отношение эквивалентности, то множество всех классов эквивалентности, содержащих элементы этого множества, является разбиением этого множества.

С другой стороны, можно доказать, что если есть некоторое разбиение множества и на этом множестве задано бинарное отношение так, что пара элементов множества находится в этом отношении только при условии, что они оба принадлежат одному классу разбиения, то это бинарное отношение будет эквивалентностью.

Можно попробовать доказать каждое из этих утверждений самостоятельно или разобрать доказательство, которое приведено в работе .

При использовании классов эквивалентности мы разбиваем множество на подмножества, в каждое из которых входят своего рода «одинаковые» элементы. Например, множество всех положительных дробей можно разбить на классы эквивалентности таким образом: 1) взять каждую несокра-

тимую дробь (например, -); 2) в каждый класс эквивалентности соответ-

2 4 6 8 ч т

ствующеи дроби отнести все равные ей дроби - = - = - = 1аким

образом, мы разобьем все положительные дроби на соответствующие классы эквивалентности. Каждый такой класс является положительным рациональным числом.

  • В Большой советской энциклопедии говорится, что «отношение - эмоционально-волевая установка личности на что-либо, т.е. выражение ее позиции; мысленное сопоставление различных объектов или сторон данного объекта». В толковом словаре Д. Н. Ушакова«отношение - взаимное общение, связь между людьми, обществами, странами и т.п., образующаяся из общения на какой-нибудь почве».

1. Рефлексивность:

2. Слабая рефлексивность:

3. Сильная рефлексивность:

4. Антирефлексивность:

5. Слабая антирефлексивность:

6. Сильная антирефлексивность:

7. Симметричность:

8. Антисимметричность:

9. Асимметричность:

10. Сильная линейность:

11. Слабая линейность:

12. Транзитивность:

Рефлексивность, свойство бинарных (двуместных, двучленных) отношений, выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется xRx. Типичные и наиболее важные примеры рефлексивных отношений: отношения типа равенства (тождества, эквивалентности, подобия и т.п.: любой предмет равен самому себе) и отношения нестрогого порядка (любой предмет не меньше и не больше самого себя). Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности, "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух. Поэтому многие употребительные в математике отношения, по определению Р. не обладающие, оказывается естественным доопределить таким образом, чтобы они становились рефлексивными, например, считать, что каждая прямая или плоскость параллельна самой себе, и т.п.

Глава 1. Элементы теории множеств

1.1 Множества

Наиболее простая структура данных, используемая в математике, имеет место в случае, когда между отдельными изолированными данными отсутствуют какие-либо взаимосвязи. Совокупность таких данных представляет собой множество . Понятие множества является неопределяемым понятием. Множество не обладает внутренней структурой. Множество можно представить себе как совокупность элементов, обладающих некоторым общим свойством. Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обычно обозначаются заглавными латинскими буквами. Если элемент

принадлежит множеству , то это обозначается:

Если каждый элемент множества

является также и элементом множества , то говорят, что множество является подмножеством множества :

Подмножество

множества называется собственным подмножеством , если

Используя понятие множества можно построить более сложные и содержательные объекты.

1.2 Операции над множествами

Основными операциями над множествами являются объединение , пересечение и разность .

Определение 1 . Объединением

Определение 2 . Пересечением двух множеств называется новое множество

Определение 3 . Разностью двух множеств называется новое множество

Если класс объектов, на которых определяются различные множества обозначить

(Универсум ), то дополнением множества называют разность упорядоченную n-ку , называют мощностью отношения .

Замечание. Понятие отношения является очень важным не только с математической точки зрения. Понятие отношения фактически лежит в основе всей реляционной теории баз данных. Как будет показано ниже, отношения являются математическим аналогом таблиц . Сам термин "реляционное представление данных", впервые введенный Коддом , происходит от термина relation , понимаемом именно в смысле этого определения.

Т. к. любое множество можно рассматривать как декартовое произведение степени 1, то любое подмножество, как и любое множество, можно считать отношением степени 1. Это не очень интересный пример, свидетельствующий лишь о том, что термины "отношение степени 1" и "подмножество" являются синонимами. Нетривиальность понятия отношения проявляется, когда степень отношения больше 1. Ключевыми здесь являются два момента:

Во-первых , все элементы отношения есть однотипные кортежи. Однотипность кортежей позволяет считать их аналогами строк в простой таблице, т.е. в такой таблице, в которой все строки состоят из одинакового числа ячеек и в соответствующих ячейках содержатся одинаковые типы данных. Например, отношение, состоящее из трех следующих кортежей { (1, "Иванов", 1000), (2, "Петров", 2000), (3, "Сидоров", 3000) } можно считать таблицей, содержащей данные о сотрудниках и их зарплатах. Такая таблица будет иметь три строки и три колонки, причем в каждой колонке содержатся данные одного типа.

В противоположность этому рассмотрим множество { (1), (1,2), (1, 2,3) }, состоящее из разнотипных числовых кортежей. Это множество не является отношением ни в

, ни в , ни в . Из кортежей, входящих в это множество нельзя составить простую таблицу. Правда, можно считать это множество отношением степени 1 на множестве всех возможных числовых кортежей всех возможных степеней

Бинарным отношением на множестве А называется подмножество его квадрата RÍ A 2 . Бинарным отношением между множествами А и В называются подмножество принадлежащее декартовому произведению 2-х множеств: RÍ АхВ.

Если упорядоченная пара (а1, а2) принадлежит отношению R, то говорят что а1 R а2, то есть между элементом а1 и а2 уст-но отношение R.

Областью определения бинарного отношения называется множество элементов а, в котором в принадлежит бинарному отношению: þ R ={a|bÎ aRb}.

Областью значения бинарного отношения называют множество b, в котором а принадлежит бинарному значению:

P R ={b|aÎ aRb } .

Обратное отношение для отношения R называется отношение: R -1 ={(b,a)|(a,b) Î R }.

Отношение можно задать:

- с помощью любого способа задания множеств

- С помощью матрицы бинарного отношения . Матрица бинарного отношения это квадратная матрица R элементы которой определяются следующим образом rij=1, (ai,aj)Î R, 0 – в противном случае.

- С использованием графа . Каждому бинарному отношению можно подставить в соответствие граф G(X,U), содержащий множество вершин Х, и множество ребер U. При этом вершины aj ai соединяются дугой если упорядоченная пара aj ai Î R. Так как отношения являются множеством упорядоченных пар, то для отношения можно определить те же операции, что и для множеств (объединение, пересечение, разность, дополнение, симметрическая разность).

Свойство бинарных отношений:

1) Рефлексивность . Пусть на множестве А задано бинарное отношение R. Бинарное отношение называется рефлексивным, если для любого элемента А упорядоченная пара из этого элемента принадлежит R: для любого A(a,a) Î R. Т.е. бинарное отношение на множестве называется рефлексивным , если всякий элемент этого множества находится в отношении с самим собой.

Матрица рефлексивного отношения на диагонали содержит 1, а граф бинарного отношения имеет петли.

2)Антирефлексивность . Бинарные отношения являются антирефлексивными, если: для любого A(a,a) Ï R.

Матрица антирефлексивного отношения на диагонали содержит 0, а граф не имеет петель.

3)Симметричность. Бинарное отношение на множестве X называется симметричным , если для каждой пары элементов множества выполнение отношения влечёт выполнение отношения . Отношение симметрично, если .

Матрица симметричного бинарного отношения симметрична относительно главной диагонали. В графе все пары вершин соединены 2-мя противоположно направленными дугами.

4) Антисимметричночть . В математике бинарное отношение на множестве X называется антисимметричным , если для каждой пары элементов множества выполнение отношений и влечёт , или, что то же самое, выполнение отношений и возможно только для равных и .


Матрица антисимметричного бинарного отношения не симметрична относительно главной диагонали, в графе отсутствуют противоположно направленные дуги.

5) Транзитивность. Бинарное отношение называют транзитивным, если:

В графе задающего транзитивное бинарное отношение для каждой пары дуг таких, что конец первой совпадает с началом второй, существует дуга, соединяющая начало первой дуги с концом второй.

Специальные бинарные отношения:

1) Отношение Эквивалентности на множестве А это отношение, обладающее свойством рефлекисвности, симметричности и транзитивности. (Отношение равенства, отношение параллельности).

2) Отношения строгого порядка: это бинарное отношение на множестве А, обладающее свойствами антирефлексивности, антисимметричности и транзитивности.

3) Отношения нестрого порядка- бинарные отношения, обладающие свойствами рефлексивности. Антисимметричности и транзитивности.