Ag химия. История Ag и всё про Аргентум: значение слова, открытие, добыча металла

Среднее содержание Серебра в земной коре (кларк) 7·10 -6 % по массе. Встречается преимущественно в средне- и низкотемпературных гидротермальных месторождениях, в зоне обогащения сульфидных месторождений, изредка - в осадочных породах (среди песчаников, содержащих углистое вещество) и россыпях. Известно свыше 50 минералов Серебра. В биосфере Серебро в основном рассеивается, в морской воде его содержание 3·10 -8 %. Серебро - один из наиболее дефицитных элементов.

Физические свойства Серебра. Серебро имеет гране-центрированную кубич. решетку (а = 4,0772 Å при 20 °С). Атомный радиус 1,44 Å, ионный радиус Ag + 1,13 Å. Плотность при 20 °С 10,5 г/см 3 ; t пл 960,8 °С; T кип 2212 °С; теплота плавления 105 кДж/кг (25,1 кал/г). Серебро обладает наивысшими среди металлов удельной электропроводностью 6297 сим/м (62,97 ом -1 ·см -1) при 25 °С, теплопроводностью 407,79 Вт/(м·К.) при 18 °С и отражательной способностью 90-99% (при длинах волн 100000-5000 Å). Удельная теплоемкость 234,46 дж/(кг·К) , удельное электросопротивление 15,9 ном·м (1,59 мком·см) при 20 °С. Серебро диамагнитно с атомной магнитной восприимчивостью при комнатной температуре -21,56·10 -6 , модуль упругости 76480 Мн/м 2 (7648 кгс/мм 2), предел прочности 100 Мн/м 2 (10 кгс/мм 2), твердость по Бринеллю 250 Мн/м 2 (25 кгс/мм 2). Конфигурация внешних электронов атома Ag 4d 10 5s 1 .

Химические свойства Серебра. Серебро проявляет химические свойства, характерные для элементов Iб подгруппы периодической системы Менделеева. В соединениях обычно одновалентно.

Серебро находится в конце электрохимического ряда напряжений, его нормальный электродный потенциал Ag = Ag + + e - равен 0,7978 в.

При обычной температуре Ag не взаимодействует с О 2 , N 2 и Н 2 . При действии свободных галогенов и серы на поверхности Серебра образуется защитная пленка малорастворимых галогенидов и сульфида Ag 2 S (кристаллы серо-черного цвета). Под влиянием сероводорода H 2 S, находящегося в атмосфере, на поверхности серебряных изделий образуется Ag 2 S в виде тонкой пленки, чем объясняется потемнение этих изделий. Сульфид можно получить действием сероводорода на растворимые соли Серебра или на водные суспензии его солей. Растворимость Ag 2 S в воде 2,48·10 -3 моль/л (25 °С). Известны аналогичные соединения - селенид Ag 2 Se и теллурид Ag 2 Te.

Из оксидов Серебра устойчивыми являются оксид (I) Ag 2 O и оксид (II) AgO. Оксид (I) образуется на поверхности Серебра в виде тонкой пленки в результате адсорбции кислорода, которая увеличивается с повышением температуры и давления.

Ag 2 O получают действием КОН на раствор AgNO 3 . Растворимость Ag 2 O в воде - 0,0174 г/л. Суспензия Ag 2 O обладает антисептическими свойствами. При 200 °С оксид Серебра (I) разлагается. Водород, оксид углерода (II), многие металлы восстанавливают Ag 2 O до металлического Ag. Озон окисляет Ag 2 O с образованием AgO. При 100 °С AgO разлагается на элементы со взрывом. Серебро растворяется в азотной кислоте при комнатной температуре с образованием AgNO 3 . Горячая концентрированная серная кислота растворяет Серебро с образованием сульфата Ag 2 SO 4 (растворимость сульфата в воде 0,79% по массе при 20 °С). В царской водке Серебро не растворяется из-за образования защитной пленки AgCl. В отсутствие окислителей при обычной температуре НCl, HBr, HI не взаимодействуют с Серебром благодаря образованию на поверхности металла защитной пленки малорастворимых галогенидов. Большинство солей Серебра, кроме AgNO 3 , AgF, AgClO 4 , обладают малой растворимостью. Серебро образует комплексные соединения, большей частью растворимые в воде. Многие из них имеют практическое значение в химические технологии и аналитической химии, например комплексные ионы - , + , - .

Получение Серебра. Большая часть Серебра (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении Серебра из серебряных и золотых руд применяют метод цианирования - растворения Серебра в щелочном растворе цианида натрия при доступе воздуха:

2Ag + 4NaCN + ½O 2 + H 2 O = 2Na + 2NaOH.

Из полученных растворов комплексных цианидов Серебро выделяют восстановлением цинком или алюминием:

2 - + Zn = 2- + 2Ag.

Из медных руд Серебро выплавляют вместе с черновой медью и затем выделяют его из анодного шлама, образующегося при электролитической очистке меди. При переработке свинцово-цинковых руд Серебро концентрируется в сплавах свинца - черновом свинце, из которого его извлекают добавлением металлического цинка, образующего с Серебром нерастворимое в свинце тугоплавкое соединение Ag 2 Zn 3 , всплывающее на поверхность свинца в виде легко снимающейся пены.

Применение Серебра. Серебро используют преимущественно в виде сплавов: из них чеканят монеты, изготовляют бытовые изделия, лабораторную и столовую посуду. Серебро покрывают радиодетали для придания им лучшей электропроводности и коррозионной стойкости; в электротехнической промышленности применяются серебряные контакты. Для пайки титана и его сплавов используются серебряные припои; в вакуумной технике Серебро служит конструкционным материалом. Металлическое Серебро идет на изготовление электродов для серебряно-цинковых и серебряно-кадмиевых аккумуляторов. Оно служит катализатором в неорганических и органических синтезе (например, в процессах окисления спиртов в альдегиды и кислоты, а также этилена в окись этилена). В пищевой промышленности применяются серебряные аппараты, в которых приготовляют фруктовые соки. Ионы Серебра в малых концентрациях стерилизуют воду. Соединения Серебра (AgBr, AgCl, AgI) применяются для производства кино- и фотоматериалов.

Серебро в искусстве. Благодаря красивому белому цвету и податливости в обработке Серебро с глубокой древности широко используется в искусстве. Однако чистое Серебро слишком мягко, поэтому при изготовлении монет и различных художественных произведений в него добавляют цветные металлы, чаще всего медь. Средствами обработки Серебра и украшения изделий из него служат чеканка, литье, филигрань, тиснение, применение эмалей, черни, гравировки, золочения.

Высокая культура художественной обработки Серебра характерна для искусства эллинистического мира, Древнего Рима, Древнего Ирана (сосуды эпохи Сасанидов, 3-7 века), средневековой Европы. Разнообразием форм, выразительностью силуэтов, мастерством фигурной и орнаментальной чеканки и литья отличаются изделия из Серебра, созданные мастерами Возрождения и барокко (Б. Челлини в Италии, ювелиры из семейств Ямницеров, Ленкеров, Ламбрехтов и других в Германии). В 18 - начале 19 вв. ведущая роль в производстве изделий из серебра переходит к Франции (К. Баллен, Т.Жермен, Р. Ж. Огюст и других). В искусстве 19-20 веков преобладает мода на незолоченое серебро; среди технических приемов доминирующее положение занимает литье, распространяются машинные приемы обработки. В русском искусстве 19 - начала 20 вв. выделяются изделия фирм Грачевых, П. А. Овчинникова, П. Ф. Сазикова, П. К. Фаберже, И. П. Хлебникова. Творческое развитие традиций ювелирного искусства прошлого, стремление наиболее полно выявить декоративные качества Серебра характерны для советских изделий из Серебра, среди которых видное место занимают произведения народных мастеров.

Серебро в организме. Серебро - постоянная составная часть растений и животных. Его содержание составляет в среднем в морских растениях 0,025 мг на 100 г сухого вещества, в наземных - 0,006 мг;, в морских животных - 0,3-1,1 мг, в наземных - следовые количества (10 -2 -10 -4 мг).

У животных накапливается в некоторых эндокринных железах, пигментной оболочке глаза, в эритроцитах; выводится главным образом с фекалиями. Серебро в организме образует комплексы с белками (глобулинами крови, гемоглобином и других). Блокируя сульфгидрилъные группы, участвующие в формировании активного центра ферментов, Серебро вызывает ингибирование последних, в частности инактивирует аденозинтрифосфатазную активность миозина. При парентеральном введении Серебро фиксируется в зонах воспаления; в крови связывается преимущественно глобулинами сыворотки.

Препараты Серебра обладают антибактериальным, вяжущим и прижигающим действием, что связано с их способностью нарушать ферментные системы микроорганизмов и осаждать белки. В медицинской практике наиболее часто применяют нитрат серебра, колларгол, протаргол (в тех же случаях, что и колларгол); бактерицидную бумагу (пористая бумага, пропитанная нитратом и хлоридом Серебра) применяют при небольших ранах, ссадинах, ожогах и т. п.

Экономическое значение Серебра. Серебро в условиях товарного производства выполняло функцию всеобщего эквивалента наряду с золотом и приобрело, как и последнее, особую потребительную стоимость - стало деньгами. Товарный мир выделил Серебро в качестве денег потому, что оно обладает важными для денежных товаров свойствами: однородностью, делимостью, сохраняемостью, портативностью (высокой стоимостью при небольших объеме и массе), легко поддается обработке.

Первоначально Серебро обращалось в форме слитков. В странах Древнего Востока (Ассирия, Вавилон, Египет), а также в Греции и Риме Серебро было широко распространенным денежным металлом наряду с золотом и медью. В Древнем Риме чеканка монет из Серебра начата в 4-3 веках до нашей эры. Чеканка первых древнерусских монет из Серебра началась в 9-10 веках.

В период раннего средневековья преобладала чеканка золотой монеты. С 16 века в связи с недостатком золота, расширением добычи Серебра в Европе и притоком его из Америки (Перу и Мексики) Серебро стало основным денежным металлом в странах Европы. В эпоху первоначального накопления капитала почти во всех странах существовал серебряный монометаллизм или биметаллизм. Золотые и серебряные монеты обращались по действительной стоимости содержавшегося в них благородного металла, причем ценностное соотношение между этими металлами складывалось стихийно, под влиянием рыночных факторов. В конце 18 - начале 19 вв. на смену системе параллельной валюты пришла система двойной валюты, при которой государство в законодательном порядке устанавливало обязательное соотношение между золотом и Серебром. Однако эта система оказалась чрезвычайно неустойчивой, так как в условиях стихийного действия закона стоимости неизбежно возникало несоответствие между рыночными и фиксированными стоимостями золота и Серебра. В конце 19 века стоимость Серебра резко снизилась вследствие совершенствования способов его добычи из полиметаллических руд (в 70-80-е годы 19 века отношение стоимости золота к Серебру составляло 1:15 - 1:16, в начале 20 века уже 1:38 - 1:39). Рост мировой добычи золота ускорил процесс вытеснения обесценившегося Серебра из обращения. В последней четверти 19 века широкое распространение в мире получил золотой монометаллизм. В большинстве стран мира вытеснение серебряной валюты золотой закончилось в начале 20 века. Серебряная валюта сохранилась примерно до середины 30-х годов 20 века в ряде стран Востока (Китай, Иран, Афганистан и других). С отходом этих стран от серебряного монометаллизма Серебро окончательно утратило значение валютного металла. В промышленно развитых странах Серебро используется только для чеканки разменной монеты.

Рост использования Серебра в технических целях, в зубоврачебном деле, в медицине, а также в производстве ювелирных изделий после 2-й мировой войны 1939-45 годов в условиях отставания добычи Серебра от потребностей рынка вызвал его нехватку. До войны около 75% добываемого Серебра ежегодно использовалось для монетарных целей. В 1950-65 годах этот показатель снизился в среднем до 50%, а в последующие годы продолжал снижаться, составив в 1971 году всего 5% . Многие страны перешли к использованию в качестве монетарного материала медно-никелевых сплавов. Хотя серебряные монеты все еще находятся в обращении, чеканка новых монет из Серебра во многих странах запрещена, а в некоторых значительно уменьшено его содержание в монетах. В США, например, согласно закону о чеканке монет, принятому в 1965, около 90% Серебра, которое шло раньше для чеканки монет, выделено для других целей. Содержание Серебра в 50-центовой монете снижено с 90 до 40%, а монеты достоинством в 10 и 25 центов, содержавшие ранее 90% Серебра, чеканятся без примесей Серебра. Новые монеты из Серебра чеканятся в связи с различными памятными событиями (Олимпийскими играми, юбилеями, мемориалами и т. д.).

Основными потребителями Серебра являются следующие отрасли: производство ювелирных изделий (столового Серебро и анодированных изделий), электротехническая и электронная промышленность, а также кинофотопромышленность.

Серебро было известно человечеству еще 6 тысяч лет назад. Серебро - химический элемент 11 группы Таблицы Менделеева, обозначается Ag (от лат. Argrntum), благородный металл серебристо-белого цвета. Цвет серебра и дал ему название, латинское слово Argentum происходит от греческого argos - блестящий.

Серебро в природе

Серебро является достаточно редким элементом, в литосфере его содержится всего около 0,000001%. Это примерно в тысячу раз меньше, чем содержание меди в земной коре. Несмотря на редкость, серебро чаще встречается в виде самородков, поэтому то оно и было известно с незапамятных времен. Сейчас самородное серебро стало редкостью, основная часть серебра находится в разнообразных минералах, основным из которых является аргентит Ag 2 S. Также большая часть находится в так называемых полиметаллических рудах, в них серебро соседствует с такими металлами как свинец , цинк и медь.

Исторические факты о серебре

Существует легенда, что первые серебряные рудники были открыты в 968 г. никем иным как основателем Священной Римской империи восточно-франкским королём Оттоном I Великим. Легенда гласит, что однажды король послал своего егеря в лес на охоту. Во время охоты тот привязал коня к дереву, который в ожидании хозяина разрыл копытами землю, где оказались необычные светлые камни. Император понял, что это серебро и повелел основать на этом месте рудник. Существуют данные, что этот богатейший рудник разрабатывался еще спустя шесть веков. Об этом свидетельствуют записи немецкого врача и металлурга Георга Агриколы (1494–1555).
Вообще Центральная Европа была очень богата залежами серебряных самородков. В Саксонии в 1477 году был найден один из самых больших самородков в истории массой до 20 тонн! Из серебра добытого в Чехии, близ города Иоахимсталя, были отчеканены миллионы европейских монет. Поэтому их так и называли - «иоахимсталер»; со временем слово укоротилось до «талера». В России это название переиначили на свой лад и у нас они назывались «ефи́мками». Серебряные талеры были самой распространенной европейской монетой в истории, от этого название пошло современное название «доллар».

Чешский богемский Иоахимсталер

Европейские серебряные рудники были настолько богаты, что расход серебра измерялся в тоннах! Но т.к. основная масса европейских серебряных рудников была открыта в XIV-XVI вв., то к настоящему времени они уже истощены.
После открытия Америки оказалось, что этот континент очень богат на серебро. Его залежи были обнаружены в Чили, Перу и Мексике. Аргентина даже получила название по латинскому имени серебра. Тут нужно указать на очень интересный факт. Географические названия химических элементов обычно давались элементу от названия какого-то места, например, гафний назван так от латинского наименования города Копенгаген, в котором он был открыт, географические названия имеют элементы полоний, рутений, галлий и другие. Тут же произошло все с точностью наоборот. Страна была названа по имени химического элемента! Это единственный подобный случай в истории. Самородки серебра находят в Америке и в настоящее время. Один из них был открыт уже в XX веке в Канаде. Этот самородок был длиной 30 метров и глубиной 18 метров! После освоения этого самородка оказалось, что он содержал 20 тонн чистого серебра!

Химические свойства серебра

Серебро - сравнительно мягкий и пластичный металл, из 1 г его можно вытянуть металлическую нить длиной 2 км! Серебро тяжёлый металл, имеет низкую теплопроводность и электропроводность. Температура плавления относительно невысок, всего 962° С. Серебро охотно образует сплавы с другими металлами, которые придают ему новые свойства, например, при добавлении меди получается более твердый сплав - биллон.
При нормальных условиях серебро не подвержено окислению, однако имеет способность поглощать кислород . Твердое серебро при нагреве способно растворить в пять раз больший объем кислорода! В жидком серебре растворяются еще больший объем газа, примерно 20:1.
Иод способен воздействовать на серебро. Особенно благородный металл «боится» иодную настойку и сероводород. В этом и заключается причина потемнения серебра со временем. Источником сероводорода в быту служат испорченные яйца, резина, некоторые полимеры. При реакции сероводорода и серебра, особенно при повышенной влажности, на поверхности металла образуется очень прочная сульфидная плёнка, которая не разрушается при нагреве и воздействии кислот и щелочей. Удалить её можно только механическим способом, например щеткой с нанесенной на неё зубной пастой.
Интересны биохимические свойства серебра. Несмотря на то, что серебро не является биоэлементом оно способно оказывать влияние на жизнедеятельность микробов подавляя работу их ферментов. Это происходит при соединении серебра с аминокислотой, входящей в состав фермента. Поэтому вода в серебряных сосудах не портится, т.к. в ней подавляется жизнедеятельность бактерий.

Применение серебра

Уже с давних времен серебро использовали при изготовлении зеркал, в настоящее время его заменяют алюминием для удешевления производства. Низкое электрическое сопротивление серебра находит применение в электротехнике и электронике, тут из него изготавливают разнообразные контакты и разъемы. В настоящее время серебро практически не используют для производства монет, из него изготавливают только памятные монеты. Большая часть серебра используется в ювелирном деле, при изготовлении столовых приборов. Серебро также широко используется в химической и пищевой промышленности.
Интересно применение иодида серебра. С его помощью можно управлять погодой. Распыляя ничтожные количества иодида серебра с самолета, добиваются образования водяных капель, т.е. проще говоря вызывается дождь. При необходимости можно выполнить и противоположную задачу, когда дождь совершенно не нужен, например, при проведении какого-то очень важного мероприятия. Для этого иодид серебра распыляют за десятки километров до места события, тогда дождь прольется там, а в нужном месте будет сухая погода.
Серебро широко применяется в медицине. Его используют как зубные протезы, в производстве лекарств (колларгол, протаргол, ляпис и др.) и медицинских инструментов.


Влияние серебра на человека

Как мы видели выше, использование небольших доз серебра имеет обеззараживающее и бактерицидное действие. Однако, что полезно в малых дозах, очень часто бывает губительно в больших. Серебро здесь не исключение. Повышение концентрации серебра в организме может вызвать снижение иммунитета, повреждения почек и печени, щитовидной железы и головного мозга. В медицине описаны случаи нарушения психики при отравлении серебром.
Многолетнее поступление серебра в организм малыми дозами приводит к развитию аргирии. Металл постепенно откладывается в тканях органов и придает им зеленоватый или голубоватый цвет, особенно виден этот эффект на коже. При тяжелых случаях аргирии кожа темнеет настолько, что становится похожа на кожу африканцев. Кроме косметического эффекта в остальном аргирия не оказывает какого то ухудшения самочувствия и расстройства работы организма. Но и тут имеется свой плюс, при том, что организм пропитан серебром, ему становятся нипочем любые инфекционные заболевания!


Американец Пол Карсон «Папа Смурф», страдавший аргирией

При описании любого элемента принято указывать его первооткрывателя и обстоятельства открытия. Такими данными об элементе № 47 человечество не располагает. Ни один из прославленных ученых к открытию серебра не причастен. Серебром люди стали пользоваться еще тогда, когда не было ученых.

О происхождении русского слова «серебро» ученые и доныне не пришли к единому мнению. Большинство из них считают, что это видоизмененное «сарпу», которое в языке древних ассирийцев означало как серп, так и полумесяц. В Ассирии считалось «металлом Луны» и было таким же священным, как в Египте .

С развитием товарных отношений , как и , стало выразителем стоимости. Пожалуй, можно сказать, что в этой своей роли оно способствовало развитию торговли даже больше, чем «царь металлов». Оно было дешевле золота, соотношение стоимости этих металлов в большинстве древних государств было 1: 10. Крупную торговлю удобнее было вести через посредство золота, мелкая же, более массовая, требовала серебра.

Пайка серебром

С инженерной точки зрения серебро, подобно золоту, долгое время считалось бесполезным металлом, практически не влиявшим на развитие техники, точнее, почти бесполезным. Еще в древности его применяли для пайки. Температура плавления серебра не столь уже высока - 960,5° С, ниже, чем золота (1063° С) и меди (1083,2°С). Сравнивать с другими металлами не имеет смысла: ассортимент металлов древности был очень невелик. (Даже намного позже, в средневековье, алхимики считали, что «семь металлов создал свет по числу семи планет».)

Однако если мы раскроем современный справочник по материаловедению, и там найдем несколько серебряных припоев: ПСр-10, ПСр-12, ПСр-25; цифра указывает на процентное содержание серебра (остальное и 1% цинка) . В технике эти припои занимают особое место, ибо паянный ими шов не только прочен и плотен, но и коррозионно устойчив. Никто, конечно не подумает запаивать такими припоями кастрюли, ведра или консервные банки, но судовые трубопроводы, котлы высокого давления, трансформаторы, электрические шины в них очень нуждаются. В частности, сплав ПСр-12 используют для пайки патрубков, штуцеров, коллекторов и другой аппаратуры из меди, а также из медных сплавов с содержанием основного металла больше 58 %.

Чем выше требования к прочности и коррозионной устойчивости паяного шва, тем с большим процентом серебра применяются припои. В отдельных случаях используют припои с 70% серебра. А для пайки титана годно лишь чистое серебро.

Мягкий свинцово-серебряный припой нередко применяют в качестве заменителя олова. На первый взгляд это кажется нелепостью: «металл консервной банки», как окрестил академик А. Е. Ферсман, заменяется валютным металлом - серебром! Однако удивляться здесь нечему, это вопрос стоимости. Самый ходовой оловянный припой ПОС-40 включает в себя 40% олова ж около 60% свинца. Заменяющий же его серебряный припой содержит всего лишь 2,5% драгоценного металла, а всю остальную массу составляет .

Значение серебряных припоев в технике неуклонно растет. Об этом можно судить по недавно опубликованным данным. В них указывалось, что только в США на эти цели расходуется до 840 т серебра в год.

Зеркальное отражение серебра

Другое, почти столь же древнее техническое использование серебра - производство зеркал. До того как научились получать листовое и стеклянные зеркала, люди пользовались отполированными до блеска металлическими пластинками. Золотые зеркала были слишком дороги, но не столько это обстоятельство препятствовало их распространению, сколько желтоватый оттенок, который они придавали отражению. Бронзовые зеркала были сравнительно дешевы, но страдали тем же недостатком и к тому же быстро тускнели. Отполированные же серебряные пластины отражали все черточки лица без наложения какого-либо оттенка и в же время достаточно хорошо сохранялись.

Первые стеклянные зеркала, появившиеся еще в I в. н. э., были «бессеребренниками»: стеклянная пластинка соединялась со свинцовой или оловянной. Такие зеркала исчезли в средние века, их вновь потеснили металлические. В XVII в. была разработана новая технология изготовления зеркал; их отражающая поверхность была сделана из амальгамы олова. Однако позже серебро вернулось в эту отрасль производства, вытеснив из нее и , и . Французский химик Птижан и немецкий - Либих разработали рецепты серебрильных растворов, которые (с небольшими изменениями) сохранились до нашего времени. Химическая схема серебрения зеркал общеизвестна: восстановление металлического серебра из аммиачного раствора его солей с помощью глюкозы или формалина.

В миллионах автомобильных и прочих фар свет электрической лампочки усиливается вогнутым зеркалом. Зеркала есть во множестве оптических приборов. Зеркалами снабжены маяки.

Зеркала прожекторов в годы войны помогали обнаружить врага в воздухе, на море и на суше; иногда с помощью прожекторов решались тактические и стратегические задачи. Так, при штурме Берлина войсками Первого Белорусского фронта 143 прожектора огромной светосилы ослепили гитлеровцев в их оборонительной полосе, и это способствовало быстрому исходу операции.

Серебряное зеркало проникает в космос и, к сожалению, не только в приборах. 7 мая 1968 г. в Совет Безопасности был направлен протест правительства Камбоджи против американского проекта запуска на орбиту спутника-зеркала. Это спутник - нечто вроде огромного надувного матраца со сверхлегким металлическим покрытием. На орбите «матрац» наполняется газом и превращается в гигантское космическое зеркало, которое, по замыслу его создателей, должно было отражать на Землю солнечный свет и освещать площадь в 100 тыс. км2 с силой, равной свету двух лун. Назначение проекта - осветить обширные территории Вьетнама в интересах войск США и их сателлитов.

Почему так энергично запротестовала Камбоджа? Дело в том, что при осуществлении проекта мог нарушиться световой режим растений, а это в свою очередь вызвать неурожай и голод в государствах Индокитайского полуострова. Протест возымел действие: «матрац» в космос не полетел.

И пластичность, и блеск. «Светлое тело, которое ковать можно»,- так определял М. В. . «Типичный» металл должен обладать высокой пластичностью, металлическим блеском, звонкостью, высокой теплопроводностью и электропроводностью. Применительно к этим требованиям серебро, можно сказать, из металлов металл.

Судите сами: из серебра можно получить листки толщиной всего лишь 0,25 мкм.

Металлический блеск - отражательная способность, о которой говорилось выше. Можно добавить, что в последнее время получили распространение родиевые зеркала, более стойкие к воздействию влаги и различных газов. Но по отражательной способности они уступают серебряным (75-80 и 95-97% соответственно). Поэтому сочли более рациональным покрытие зеркал делать все же серебря-ным, а поверх него наносить тончайшую пленку родия, предохраняющую серебро от потускнения.

В технике весьма распространено серебрение. Тончайшую серебряную пленку наносят не только (и не столько) ради а высокой отражательной способности покрытия, а прежде всего ради химической стойкости и повышенной электропроводности. Кроме того, этому покрытию свойственны эластичность и прекрасное сцепление с основным металлом.

Здесь опять возможна реплика придирчивого читателя: о какой химической стойкости может идти речь, когда в предыдущем абзаце говорилось о защите серебряного покрытия родиевой пленкой? Противоречия, как это ни странно, нет. Химическая стойкость - понятие многогранное. Серебро лучше многих других металлов противостоит действию щелочей. Именно поэтому стенки трубопроводов, автоклавов, реакторов и других аппаратов химической промышленности нередко покрывают серебром как защитным металлом. В электрических аккумуляторах с щелочным электролитом многие детали подвергаются опасности воздействия на них едкого кали или натра высокой концентрации. В же время детали эти должны обладать высокой электропроводностью. Лучшего материала для них, чем серебро, обладающее устойчивостью к щелочам и замечательной электропроводностью, не найти. Из всех металлов серебро самый электропроводный. Но высокая стоимость элемента № 47 во многих случаях заставляет пользоваться не серебряными, а посеребренными деталями. Серебряные покрытия хороши еще и тем, что они прочны и плотны - беспористы.

По электропроводности при нормальной температуре серебру нет равных. Серебряные проводники незаменимы в приборах высокой точности, когда недопустим риск. Ведь не случайно в годы второй мировой войны казначейство США раскошелилось, выдав военному ведомству около 40 т драгоценного серебра. К не на что-нибудь, а на замену меди! Серебро потребовалось авторам «Манхэттен-ского проекта». (Позже стало известно, что это был шифр работ по созданию атомной бомбы.)

Следует отметить, что серебро - лучший электропроводник при нормальных условиях, но, в отличие от многих металлов и сплавов, оно не становится сверхпроводником в условиях предельно достижимого холода. Так же, кстати, ведет себя и . Как ни парадоксально, но именно эти, замечательные по электропроводности при сверхнизких температурах используют в качестве электроизоляторов.

Машиностроители шутя утверждают, что земной шар крутится на подшипниках. Если бы так было на самом деле, то можно не сомневаться-в столь ответственном узле наверняка применялись бы многослойные подшипники, в которых один или несколько слоев серебряные. Танки и самолеты были первыми потребителями драгоценных подшипников.

В США, например, производство подшипников из серебра началось в 1942 г., тогда на их производство было выделено 311 т драгоценного металла. Через год эта цифра выросла до 778 т.

Выше мы упоминали о таком качестве металлов, как звонкость. И по звонкости серебро заметно выделяется среди других металлов. Недаром во многих сказках фигурируют серебряные колокольчики. Колокольных дел мастера издавна добавляли серебро в бронзу «для малинового звона». В наше время струны некоторых музыкальных инструментов делают из сплава, в котором 90% серебра.

Серебро в фото и кино

Фотография и кинематограф появились в XIX в. и дали серебру еще одну работу. Особое качество элемента № 47 - светочувствительность его солей.

Более 100 лет известен фотопроцесс, но в чем его сущность, каков механизм реакции, лежащей в его основе? До последнего времени это представляли весьма приближенно.

На первый взгляд все просто: свет возбуждает химическую реакцию, и металлическое серебро выделяется из серебряной соли, в частности из бромистого серебра -лучшего из светочувствительных материалов. В желатине, нанесенной на , пленку или бумагу, эта соль содержится в виде кристаллов с ионной решеткой. Можно предположить, что квант света, падая на такой кристалл, усиливает колебания электрона на орбите иона брома и дает ему возможность перейти к иону серебра. Таким образом, пойдут реакции

Вr ⁻ + hν → Br + e ⁻

Ag ⁺ + е ⁻ → Ag.

Однако весьма существенно то, что состояние AgBr более устойчиво, чем состояние Ag+Br. Выяснилось, что чистое лишено светочувствительности.

В чём же тогда дело? Как оказалось, чувствительны к действию света только дефектные кристаллы AgHr. В их Кристаллической решетке есть своего рода пустоты, которые заполнены добавочными атомами серебра или брома. Эти атомы более подвижны и играют роль «электронных ловушек», затрудняя обратный переход электрона к брому. После того как электрон будет «выбит из седла» квантом света, один из «посторонних» атомов обязательно примет его. Вокруг такого «зародыша светочувствительности» адсорбируются и закрепляются выделившиеся из решетки атомы серебра. Освещенная пластинка ничем не отличается от неосвещенной. Изображение на ней появляется лишь после проявления. Этот процесс усиливает действие «зародышей светочувствительности», и изображение после закрепления становится видимым. Такова принципиальная схема, дающая самое общее представление о механизме фотопроцесса.

Фото- и кинопромышленность стали крупнейшими потребителями серебра. В 1931 г., например, США на эти цели расходовали 146 т драгоценного металла, а в 1958- уже 933 т.

Старые фотоснимки и, в частности, фотодокументы со временем выцветают. До последнего времени был лишь один способ их восстановления - репродукция, пересъемка (с неизбежными потерями качества). Совсем недавно найден иной способ реставрации старых фотографий.

Снимок облучают нейтронами, и серебро, которым он «нарисован», превращается в свой короткоживущий радиоактивный изотоп. В течение нескольких минут это серебро испускает гамма-лучи, и если в это время на фотографию наложить пластинку или пленку с мелкозернистой эмульсией, то можно получить изображение, более четкое, чем на оригинале.

Светочувствительность серебряных солей используют не только в фотографии и кино. Недавно из Германии и США почти одновременно поступили сообщения об универсальных защитных очках. Стекла их изготовлены из прозрачных эфиров целлюлозы, в которых растворено небольшое количество галогенидов серебра. При нормальном освещении такие очки пропускают около половины падающих на них световых лучей. Если же свет становится сильнее, то пропускная способность стекол падает до 5-10%, поскольку происходит восстановление части серебра и , естественно, становится менее прозрачным. А когда свет снова слабеет, происходит обратная реакция и стекла приобретают большую прозрачность.

Серебро (лат. argentum), ag, химический элемент i группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси двух стабильных изотопов 107 ag и 109 ag; из радиоактивных изотопов практически важен 110 ag (t 1 /2 = 253 cym ). С. было известно в глубокой древности (4-е тыс. до н. э.) в Египте, Персии, Китае.

Распространение в природе. Среднее содержание С. в земной коре (кларк) 7 · 10 -6 % по массе. Встречается преимущественно в средне- и низкотемпературных гидротермальных месторождениях , в зоне обогащения сульфидных месторождений, изредка - в осадочных породах (среди песчаников, содержащих углистое вещество) и россыпях. Известно свыше 50 минералов С. В биосфере С. в основном рассеивается, в морской воде его содержание 3 · 10 -8 %. С. - один из наиболее дефицитных элементов.

Физические и химические свойства. С. имеет гранецентрированную кубическую решётку (а = 4,0772 a при 20 «С). Атомный радиус 1,44 a , ионный радиус ag + 1,13 a . Плотность при 20 °С 10,5 г/см 3 , t пл 960,8°С; t kип 2212°С; теплота плавления 105 кдж/кг (25,1 кал/г ). С. обладает наивысшими среди металлов удельной электропроводностью 6297 сим/м (62,97 ом -1 (см -1 ) при 25 °С, теплопроводностью 407,79 вт /(м · К) при 18 °С и отражательной способностью 90-99% (при длинах волн 100000-5000 a). Удельная теплоёмкость 234,46 дж/ (кг · К) , удельное электросопротивление 15,9 ном (м (1,59 мком (см ) при 20°С. С. диамагнитно с атомной магнитной восприимчивостью при комнатной температуре - 21,56 · 10 -6 , модуль упругости 76480 Мн/м 2 (7648 кгс/мм 2 ), предел прочности 100 Мн/м 2 (10 кгс/мм 2 ), твёрдость по Бринеллю 250 Мн/м 2 (25 кгс/мм 2 ). Конфигурация внешних электронов атома ag 4d 10 5s 4 .

С. проявляет химические свойства, характерные для элементов 16 подгруппы периодической системы Менделеева. В соединениях обычно одновалентно.

С. находится в конце электрохимического ряда напряжений, его нормальный электродный потенциал ag u ag + + е - равен 0,7978 в .

При обычной температуре ag не взаимодействует с o 2 , n 2 и h 2 . При действии свободных галогенов и серы на поверхности С. образуется защитная плёнка малорастворимых галогенидов и сульфида ag 2 s (кристаллы серо-чёрного цвета). Под влиянием сероводорода h 2 s, находящегося в атмосфере, на поверхности серебряных изделий образуется ag 2 s в виде тонкой плёнки, чем объясняется потемнение этих изделий. Сульфид можно получить действием сероводорода на растворимые соли С. или на водные суспензии его солей. Растворимость ag 2 s в воде 2,48 · 10 -5 моль/л (25 °С). Известны аналогичные соединения - селенид ag 2 se и теллурид ag 2 te.

Из окислов С. устойчивыми являются закись ag 2 o и окись ago. Закись образуется на поверхности С. в виде тонкой плёнки в результате адсорбции кислорода, которая увеличивается с повышением температуры и давления.

ag 2 o получают действием КОН на раствор agno 3 . Растворимость ag 2 o в воде - 0,0174 г/л . Суспензия ag 2 o обладает антисептическими свойствами. При 200 °С закись С. разлагается. Водород, окись углерода, многие металлы восстанавливают ag 2 o до металлического ag. Озон окисляет ag 2 o с образованием ago. При 100 °С ago разлагается на элементы со взрывом. С. растворяется в азотной кислоте при комнатной температуре с образованием agno 3 . Горячая концентрированная серная кислота растворяет С. с образованием сульфата ag 2 so 4 (растворимость сульфата в воде 0,79% по массе при 20 °С). В царской водке С. не растворяется из-за образования защитной плёнки agci. В отсутствие окислителей при обычной температуре hci, hbr, hi не взаимодействуют с С. благодаря образованию на поверхности металла защитной плёнки малорастворимых галогенидов. Большинство солей С., кроме agno 3 , agf, agcio 4 обладают малой растворимостью. С. образует комплексные соединения, большей частью растворимые в воде. Многие из них имеют практическое значение в химической технологии и аналитической химии, например комплексные ионы - , + , - .

Получение. Большая часть С. (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении С. из серебряных и золотых руд применяют метод цианирования - растворения С. в щелочном растворе цианида натрия при доступе воздуха:

2 ag + 4 na cn + 1/2О 2 + h 2 o = 2 na + 2naoh.

Из полученных растворов комплексных цианидов С. выделяют восстановлением цинком или алюминием:

2 - + zn = 2- +2 ag.

Из медных руд С. выплавляют вместе с черновой медью и затем выделяют его из анодного шлама, образующегося при электролитической очистке меди. При переработке свинцово-цинковых руд С. концентрируется в сплавах свинца - черновом свинце, из которого его извлекают добавлением металлического цинка, образующего с С. нерастворимое в свинце тугоплавкое соединение ag 2 zn 3 , всплывающее на поверхность свинца в виде легко снимающейся пены. Далее для отделения С. от цинка последний отгоняют при 1250 °С. Извлечённое из медных или свинцово-цинковых руд С. сплавляют (сплав Доре) и подвергают электролитической очистке.

Применение. С. используют преимущественно в виде сплавов: из них чеканят монеты, изготовляют бытовые изделия, лабораторную и столовую посуду. С. покрывают радиодетали для придания им лучшей электропроводности и коррозионной стойкости; в электротехнической промышленности применяются серебряные контакты. Для пайки титана и его сплавов используются серебряные припои; в вакуумной технике С. служит конструкционным материалом Металлическое С. идёт на изготовление электродов для серебряно-цинковых и серебряно-кадмиевых аккумуляторов. Оно служит катализатором в неорганическом и органическом синтезе (например, в процессах окисления спиртов в альдегиды и кислоты, а также этилена в окись этилена). В пищевой промышленности применяются серебряные аппараты, в которых приготовляют фруктовые соки. Ионы С. в малых концентрациях стерилизуют воду. Огромные количества соединений С. (agbr, agci, agl) применяются для производства кино- и фотоматериалов.

С. И. Гинзбург.

Серебро в искусстве. Благодаря красивому белому цвету и податливости в обработке С. с глубокой древности широко используется в искусстве. Однако чистое С. слишком мягко, поэтому при изготовлении монет и различных художественных произведений в него добавляют цветные металлы, чаще всего медь. Средствами обработки С. и украшения изделий из него служат чеканка, литьё, филигрань, тиснение, применение эмалей, черни, гравировки, золочения.

Высокая культура художественной обработки С. характерна для искусства эллинистического мира, Древнего Рима, Древнего Ирана (сосуды эпохи Сасанидов, 3-7 вв.), средневековой Европы. Разнообразием форм, выразительностью силуэтов, мастерством фигурной и орнаментальной чеканки и литья отличаются изделия из С., созданные мастерами Возрождения и барокко (Б. Челлини в Италии, ювелиры из семейств Ямницеров, Ленкеров, Ламбрехтов и другие в Германии). В 18 - начале 19 вв. ведущая роль в производстве изделий из серебра переходит к Франции (К. Баллен, Т. Жермен, Р. Ж. Огюст и др.). В искусстве 19-20 вв. преобладает мода на незолочёное серебро; среди технических приёмов доминирующее положение занимает литьё, распространяются машинные приёмы обработки. В русском искусстве 19 - начала 20 вв. выделяются изделия фирм Грачевых, П. А. Овчинникова, П. Ф. Сазикова, П. К. Фаберже, И. П. Хлебникова. Творческое развитие традиций ювелирного искусства прошлого, стремление наиболее полно выявить декоративные качества С. характерны для сов. изделий из С., среди которых видное место занимают произведения народных мастеров.

Г. А. Маркова.

Серебро в организме. С. - постоянная составная часть растений и животных. Его содержание составляет в среднем в морских растениях 0,025 мг на 100 г сухого вещества, в наземных - 0,006 мг ; в морских животных - 0,3-1,1 мг , в наземных - следовые количества (10 -2 -10 -4 мг ). У животных накапливается в некоторых эндокринных железах, пигментной оболочке глаза, в эритроцитах; выводится главным образом с фекалиями. С. в организме образует комплексы с белками (глобулинами крови, гемоглобином и др.). Блокируя сульфгидрильные группы , участвующие в формировании активного центра ферментов, С. вызывает ингибирование последних, в частности инактивирует аденозинтрифосфатазную активность миозина . Биологическая роль С. изучена недостаточно. При парентеральном введении С. фиксируется в зонах воспаления; в крови связывается преимущественно глобулинами сыворотки.

Ю. И. Раецкая.

Препараты С. обладают антибактериальным, вяжущим и прижигающим действием, что связано с их способностью нарушать ферментные системы микроорганизмов и осаждать белки. В медицинской практике наиболее часто применяют серебра нитрат , колларгол , протаргол (в тех же случаях, что и колларгол); бактерицидную бумагу (пористая бумага, пропитанная нитратом и хлоридом С.) применяют при небольших ранах, ссадинах, ожогах и т. п.

Экономическое значение. С. в условиях товарного производства выполняло функцию всеобщего эквивалента наряду с золотом и приобрело, как и последнее, особую потребительную стоимость - стало деньгами . «Золото и серебро по своей природе не деньги, но деньги по своей природе - золото и серебро» (Маркс К., в кн.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 13, с. 137). Товарный мир выделил С. в качестве денег потому, что оно обладает важными для денежных товаров свойствами: однородностью, делимостью, сохраняемостью, портативностью (высокой стоимостью при небольших объёме и массе), легко поддаётся обработке.

Первоначально С. обращалось в форме слитков. В странах Древнего Востока (Ассирия, Вавилон, Египет), а также в Греции и Риме С. было широко распространённым денежным металлом наряду с золотом и медью. В Древнем Риме чеканка монет из С. начата в 4-3 вв. до н. э. Чеканка первых древнерусских монет из С. началась в 9-10 вв.

В период раннего средневековья преобладала чеканка золотой монеты. С 16 в. в связи с недостатком золота, расширением добычи С. в Европе и притоком его из Америки (Перу и Мексики) С. стало основным денежным металлом в странах Европы. В эпоху первоначального накопления капитала почти во всех странах существовал серебряный монометаллизм или биметаллизм . Золотые и серебряные монеты обращались по действительной стоимости содержавшегося в них благородного металла, причём ценностное соотношение между этими металлами складывалось стихийно, под влиянием рыночных факторов. В конце 18 - начале 19 вв. на смену системе параллельной валюты пришла система двойной валюты при которой государство в законодательном порядке устанавливало обязательное соотношение между золотом и С. Однако эта система оказалась чрезвычайно неустойчивой, т. к. в условиях стихийного действия закона стоимости неизбежно возникало несоответствие между рыночными и фиксированными стоимостями золота и С. В конце 19 в. стоимость С. резко снизилась вследствие совершенствования способов его добычи из полиметаллических руд (в 70-80-е гг. 19 в. отношение стоимости золота к С. составляло 1:15-1: 16, в начале 20 в. уже 1: 38-1: 39). Рост мировой добычи золота ускорил процесс вытеснения обесценившегося С. из обращения. В последней четверти 19 в. широкое распространение в капиталистическом мире получил золотой монометаллизм. В большинстве стран мира вытеснение серебряной валюты золотой закончилось в начале 20 в. Серебряная валюта сохранилась примерно до середины 30-х гг. 20 в. в ряде стран Востока (Китай, Иран, Афганистан и др.). С отходом этих стран от серебряного монометаллизма С. окончательно утратило значение валютного металла. В промышленно развитых капиталистических странах С. используется только для чеканки разменной монеты.

Рост использования С. в технических целях, в зубоврачебном деле, в медицине, а также в производстве ювелирных изделий после 2-й мировой войны 1939-45 в условиях отставания добычи С. от потребностей рынка вызвал его нехватку. До войны около 75% добываемого С. ежегодно использовалось для монетарных целей. В 1950-65 этот показатель снизился в среднем до 50%, а в последующие годы продолжал снижаться, составив в 1971 всего 5%. Многие страны перешли к использованию в качестве монетарного материала медно-никелевых сплавов. Хотя серебряные монеты всё ещё находятся в обращении, чеканка новых монет из С. во многих странах запрещена, а в некоторых значительно уменьшено его содержание в монетах. В США, например, согласно закону о чеканке монет, принятому в 1965, около 90% С., которое шло раньше для чеканки монет, выделено для др. целей. Содержание С. в 50-центовой монете снижено с 90 до 40%, а монеты достоинством в 10 и 25 центов, содержавшие ранее 90% С., чеканятся без примесей С. Новые монеты из С. чеканятся в связи с различными памятными событиями (Олимпийскими играми, юбилеями, мемориалами и т. д.).

В начале 70-х гг. основными потребителями С. были следующие отрасли: производство ювелирных изделий (столового С. и анодированных изделий), электротехническая и электронная промышленность, кинофотопромышленность.

Для рынка С. в 60-х и начале 70-х гг. характерен рост цен на С. и систематическое превышение потребления С. над производством первичного металла. Дефицит восполнялся в значительной мере за счёт вторичного металла, в частности полученного в результате переплавки монет.

Л. М. Райцин.

Лит.: Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Плаксин И. Н., Металлургия благородных металлов, М., 1958; Краткая химическая энциклопедия, т. 4, М., 1965; Максимов М. М., Очерк о серебре, М., 1974; Постникова-Лосева М. М., Русское ювелирное искусство, его центры и мастера, М., 1974; link e. М., eine kunst-und kulturgeschich-te des silbers, b. - fr./m. - w., 1968.

cкачать реферат

Знаменитый академик Виноградов (именем которого названы разлом на дне океана, гора на Марсе и кратер на Луне), считал: серебра в породах земной коры немало. Особенно много этого металла в глинистых сланцах осадочных пород. До одного грамма на тонну сланца!

Такая концентрация рекордна для благородных металлов – хотя в некоторых метеоритах, прибывающих к нам из пояса астероидов, процентное содержание серебра еще выше.

В рудных месторождениях нередко встречаются массивные серебряные самородки. В ΧV веке в Северных Альпах был добыт самородок серебра весом в 20 тонн! Жильно-самородное серебряное образование, обнаруженное в Канаде, представляло собой плиту длиной в 30 метров. Многосоткилограммовые конкреции металлического серебра (часто с примесями вроде золота и платины) время от времени добываются в разных уголках планеты.

Не добывают, но и не забывают люди о возможности добычи серебра, растворенного в морской воде. Оказывается, в океане серебра вдесятеро больше чем золота! А это – резервы объемом в миллиарды тонн!

Проблема и земных, и океанических запасов серебра состоит в сложности извлечения металла из его природных соединений.

Природные формы серебряных руд

Принято считать, что благородные металлы абсолютно не реагируют с другими веществами и элементами. Это заблуждение: реакции наблюдаются, хотя и не такие интенсивные и разнообразные, как с участием более активных химических элементов. В природе встречается не менее пятидесяти соединений серебра, из которых половина находит промышленное применение.

С давних времен добываются электрум, в котором золота несколько больше чем серебра, и кюстелит, в котором серебра немного больше чем золота. Природные соединения серебра и меди, серебра и сурьмы пользуются немалым спросом у человека. Не менее половины добываемых серебряных руд – это аргентит, соединение серебра и серы.

Месторождения серебра – это, как правило, рудные залежи, богатые сразу несколькими полезными ископаемыми. Однако в половине случаев превалируют именно серебряные руды.

Земные сокровищницы распределены по свету относительно равномерно: серебряные копи с хорошей добычей действуют в горных районах обеих Америк, в Австралии, в Европе и Азии. В Африке значительных залежей серебра не разрабатывается.


История и перспективы освоения богатства

Первое серебро было добыто на территории современной Сирии около семи тысяч лет назад. Древний Египет пополнял свою казну серебром за счет металла, добытого в Сирии. Незадолго до наступления Новой эры стали разрабатываться греческие месторождения, однако лидерство в поставках товарного серебра на средиземноморский рынок в те времена попеременно принадлежало то Иберии, то Карфагену.

Европейские серебряные рудники раннего средневековья эксплуатировались с нарастающей интенсивностью. Ежегодная добыча белого металла в XIII веке составляла примерно 30 тонн, но всего через 200 лет выросла вдвое. Норвежское месторождение Конгсберг, дав первые тонны качественной руды в 1623-м году, еще более усилило приток серебра на рынок. По подсчетам историков, в серебродобывающей отрасли в средние века и в новое время работало до ста тысяч человек!

Испанцы, грабительски осваивая недавно открытую Америку, за двести лет вывезли в Европу не менее 200 тысяч тонн благородного металла. Россия довольно долго не имела собственной индустрии выплавки серебра, однако летом 1687-го года Лаврентий Нейдгарт, потомственный рудознатец и литейщик, выплавил первое российское серебро. Заложенные им в Нерчинске «рудокопные места» через полторы сотни лет приняли осужденных на каторгу декабристов...

Сегодня в России ежегодно добывается 550 – 600 тонн серебра. Это немного: в 50 раз больше драгоценного металла добывается в Перу; недалеко от Перу ушли Мексика, Чили и Китай. В масштабе планеты годовая добыча серебра исчисляется двадцатью тысячами тонн. Разведанные запасы серебра не превышают 600 тысяч тонн.

Не менее пятой части серебра, сконцентрированного в месторождениях, находится в самородном виде.

Физические свойства серебра

Плотность серебра уступает немного плотности свинца и заметно превосходит плотность меди. Один кубический сантиметр белого металла весит 10,5 г. Серебро весьма пластично: один грамм чистого металла можно вытянуть в два километра проволоки. Будучи раскатанным в тончайшую фольгу (допустимая толщина – 0,25 мкм), серебро становится прозрачным, и на просвет выглядит сине-фиолетовым.

Инертность серебра условна: даже практически лишенный примесей слиток серебра со временем темнеет. Сероводород, в минимальных концентрациях присутствующий в воздухе практически всегда, реагирует с серебром. Тонкая пленка сульфида, покрывающая серебряную отливку, отсвечивает серовато-розовым цветом. Утолщение слоя приводит к появлению выраженной черноты на поверхности изделия.

Давно и заслуженно серебро считается «голосистым» металлом. Серебряные колокольчики бельгийского города Малин (точнее Mechelen) завоевали души приверженцев еще в ΧVΙΙ веке. Комплекты колоколов, нежно и звонко звучащих благодаря включению в сплав серебра, выпускаются во Фламандской Бельгии и теперь.

Струны смычковых инструментов тоже нередко делают из серебра (или с использованием серебра): тогда звук инструмента ярок, чист, «маслянист» - как выражаются музыканты. Серебряные струны гитар давно стали нарицательным образом – в то время как являются вполне реальным объектом потребления.

Плавится серебро при температуре 961,93°C, что относит его к сравнительно тугоплавким цветным металлам. По теплопроводности и электропроводности серебро – чемпион, однако в отличие от большинства металлов электропроводность у серебра не превращается в сверхпроводимость при охлаждении проводника до температур, близких к абсолютному нулю.

Подобная особенность (свойственная, кстати, еще и меди – а больше ни одному из металлов) дала возможность физикам изготавливать из серебра...электроизоляторы. Используемые, конечно же, в криогенной технике и эффективные лишь при сверхнизких температурах.

Энергию электромагнитного поля видимого и теплового спектра хорошо отполированное серебро отражает на 95-97%. Правда, неизбежное в атмосферных условиях потускнение серебра мешает практическому использованию серебряных зеркал.


Делу помогает другой благородный металл – родий. Тончайшее родиевое покрытие защищает серебро от воздействия агрессивных реагентов. Поэтому в практической астрономии серебряные зеркала не теряют актуальности со времен Галилея!

Любимый металл алхимиков

Серебро, как и золото, в обычных условиях не реагирует с кислородом. Именно это свойство позволило стародавним исследователям причислить ярко белый металл к благородным. Однако растворять в себе кислород горячее серебро «умеет», причем гораздо лучше холодной воды.

Разогретое до половины температуры плавления, серебро поглощает кислород в соотношении один к пяти. То есть один кубический сантиметр драгоценного металла может связать пять кубических сантиметров кислорода! Жидкое серебро впитывает кислорода уже в 20 раз больше своего объема!

Подобное свойство делает работу с серебром опасной. Застывая, расплавленное серебро расстается с избытком растворенного газа. Выделение кислорода носит взрывной характер: брызги раскаленного металла разлетаются во множестве и с силой.

Разогретое серебро может соединяться с трехатомным кислородом. Химическая активность озона приводит к появлению небольших количеств оксидов Ag2О, Ag2O2 и Ag2O3.

Удивительна способность серебра растворяться в ртути – и при этом сопротивляться воздействию многих кислот. Во всяком случае, царская водка – смесь азотной и соляной кислот, - растворяющая даже золото, никак не влияет на серебро. Секрет – в образовании химически стойкого слоя хлорида серебра на поверхности металла, погруженного в царскую водку.

Устойчиво серебро и к воздействию щелочей. Из-за этого соли серебра не растворяются в воде (имеющей, как известно, щелочную реакцию). Тем не менее, в организме человека – особенно в его мозге – серебра не так уж и мало. Однако с пищей мы получаем серебра впятеро больше, чем «оставляем» на балансе собственного тела. Удивляться нечему: для живой природы серебро – яд!

...Но яд полезный

Издавна замечено: животный мир в районах нахождения серебряных залежей бедноват. Пить воду из ручьев, протекающих по черным землям серебряных руд, охотников находится немного. В избыточном количестве серебро, поступая в организм вместе с водой, делается токсичным.

О способности серебра губить микрофлору человек догадался задолго до изобретения микроскопа и открытия мира одноклеточных. Серебряные сосуды для воды использовались в войсках древних персов. Ранозаживляющие пластыри из серебряных пластин применялись в Древнем Египте.

Постоянный прием воды, переобогащенной серебром, меняет окраску кожных покровов человека. Серо-синий и даже фиолетовый оттенок кожи слизистых оболочек превращает человека в неземное существо. Однако инфекционным заболеваниям люди с выраженной аргирией (таково имя болезни, вызываемой избытком серебра в организме) не подвержены. Да и функциональные расстройства у них наблюдаются далеко не всегда...